

Eléments de robustesse aux défauts de capteurs pour les véhicules (aériens) autonomes

Julien Marzat ONERA Palaiseau, Laboratoire COPERNIC JAMACS'16, Villeneuve d'Ascq, 15-16 Novembre 2016

THE FRENCH AEROSPACE LAB

retour sur innovation

Laboratoire COPERNIC (ONERA Palaiseau)

Commande et Perception pour la Navigation autonome et la Coopération

- Une équipe pluridisciplinaire intégrée
 - ▶ 5 ingénieurs en traitement d'image et modélisation
 - 4 ingénieurs en commande et estimation
- Thèmes de recherche
 - Estimation d'état basée vision
 - Modélisation d'environnement pour la navigation autonome
 - Synthèse de lois de guidage et de navigation
 - Asservissement visuel
 - Guidage coopératif
 - Détection et localisation de défauts, reconfiguration
 - Adéquation algorithmes / architectures de calcul
- Cadre applicatif
 - Environnement encombré sans infrastructure d'aide à la localisation (GPS, Wifi, Marqueurs, ...)

Moyens d'essai et de validation

 Une volière avec motion capture
 Des plateformes robotiques (robots mobiles et drones) équipées de capteurs (dont caméras) et calculateurs embarqués

Localisation de source par une flotte de véhicules

- Recherche en formation du maximum d'un champ
- Détection de défauts de capteurs au sein de la flotte
- Reconfiguration de la formation
- Navigation autonome en milieu intérieur encombré
 - Boucle intégrée localisation basée vision + guidage
 - Fusion multi-capteurs et détection de défauts
 - Résultats expérimentaux

Section 1

Détection de défauts de capteurs dans une flotte de véhicules

Context

Source location and surveillance missions

- Forest fire source location
- Chemical or gas leaks
- Surveillance of large areas or search and rescue

Interest for multi-vehicle systems (MVS)

- Mission repartition
- Robustness to faults or agent loss

Goal

 \rightarrow Find the global maximum of an initially unknown spatial field

Means

- \rightarrow Multi-vehicle system (MVS)
- \rightarrow Each vehicle measures the field value at its position

Constraints

- \rightarrow Accurately locate field maximum
- \rightarrow Take into account vehicle dynamics
- \rightarrow Avoid collisions between vehicles
- \rightarrow Limit the number of measurements

Arthur Kahn, Reconfigurable cooperative control for extremum seeking, PhD Thesis, Université Paris-Saclay, 2015

Assumptions

Consider some unknown, continuous, and time-invariant scalar field

$$\phi: \mathbf{x} \in \mathscr{D} \subset \mathbb{R}^2 o \phi(\mathbf{x}) \in \mathbb{R}$$

to be maximized using N identical mobile agents with dynamics

$$M\ddot{\mathbf{x}}_i + C(\mathbf{x}_i, \dot{\mathbf{x}}_i)\dot{\mathbf{x}}_i = \mathbf{u}_i,$$

and measurement equation at \mathbf{x}_i

$$y(\mathbf{x}_i) = \phi(\mathbf{x}_i) + n_i(\eta_i),$$

 n_i measurement noise and η_i the *i*-th sensor state

- $\eta_i = 0$ nominal sensor
- $\eta_i = 1$ faulty sensor (bias or modified variance)

- ► N identical vehicles with lossless synchronized communication
- Communication radius R defines agent i neighbourhood

$$\mathscr{N}_i(t) = \{j \mid \|\mathbf{x}_i(t) - \mathbf{x}_j(t)\| \leq R\}.$$

Available information at time t_k for agent i

$$\mathscr{S}_i(t_k) = \bigcup_{\ell=0}^k \left\{ [y_j(t_\ell), \mathbf{x}_j(t_\ell)] \mid j \in \mathscr{N}_i(t_\ell) \cap \mathscr{M}(t_\ell) \right\}.$$

Define a strategy to find efficiently (time, measurements)

$$\mathbf{x}_M = \arg \max_{\mathbf{x} \in D} \{ \phi(\mathbf{x}) \}$$

Topics addressed

1 Define iteratively vehicle sampling positions

2 Model computation from measurements

3 Move vehicles with collision avoidance

1 Define iteratively vehicle sampling positions

2 Model computation from measurements

3 Move vehicles with collision avoidance

Optimal sensor placement

Local linear model

Formation control

Local approach

"Gradient climbing" algorithm (Ögren 2004, Cortes 2009)

- 1. Vehicles are kept in a close formation
- 2. Vehicles measure the field value at their positions and broadcast
- 3. Cooperative gradient estimation from measurements
- 4. Computation of formation motion along gradient direction

Contributions

- Cooperative weighted least-square estimation with local model
- Outlier detection: adaptive threshold related to cooperative estimation model
- Optimal sensor placement with faulty sensors (Fisher information matrix)
- ► Fleet control: vehicle formation motion and reconfiguration

Locally, spatial field ϕ can be written

$$\begin{split} \phi_{i}\left(\mathbf{x}\right) &= \phi\left(\widehat{\mathbf{x}}_{i}^{k}\right) + \left(\mathbf{x} - \widehat{\mathbf{x}}_{i}^{k}\right)^{\mathsf{T}} \nabla \phi\left(\widehat{\mathbf{x}}_{i}^{k}\right) + \frac{1}{2} \left(\mathbf{x} - \widehat{\mathbf{x}}_{i}^{k}\right)^{\mathsf{T}} \nabla^{2} \phi(\boldsymbol{\chi}_{i}) \left(\mathbf{x} - \widehat{\mathbf{x}}_{i}^{k}\right). \end{split}$$
Parameter vector $\boldsymbol{\alpha}_{i}^{k} = \begin{pmatrix} \phi\left(\widehat{\mathbf{x}}_{i}^{k}\right) \\ \nabla \phi\left(\widehat{\mathbf{x}}_{i}^{k}\right) \end{pmatrix}$ to be estimated

Local linear model

$$\overline{\phi}_{i}(\mathbf{x}) = \phi\left(\widehat{\mathbf{x}}_{i}^{k}\right) + \left(\mathbf{x} - \widehat{\mathbf{x}}_{i}^{k}\right)^{\mathsf{T}} \nabla \phi\left(\widehat{\mathbf{x}}_{i}^{k}\right),$$

with modeling error $e_i(\mathbf{x}) = \phi_i(\mathbf{x}) - \overline{\phi}_i(\mathbf{x})$

Measurement of vehicle j

$$y_j(t_k) = \left(1 \quad \left(\mathbf{x}_j(t_k) - \widehat{\mathbf{x}}_i^k \right)^\mathsf{T} \right) \alpha_i^k + e_i(\mathbf{x}_j(t_k)) + n_j(t_k).$$

Vehicle *i* collects all measurements from $\mathcal{N}_i(t_k)$

$$\mathbf{y}_{i,k} = \overline{\mathbf{R}}_{i,k} \alpha_i^k + \mathbf{n}_{i,k} + \mathbf{e}_{i,k}$$

Model-based fault detection scheme

Problem characteristics

- Local model shared by vehicles
- Spatially-varying modeling error

Fault detection

Faulty sensor of vehicle $i : y_i = \phi(\mathbf{x}_i) + n_i(\eta_i) + d$

Detection residual $r_i = \hat{\phi}_i(\mathbf{x}_i) - y_i$

Adaptive threshold for residual analysis

$$|r_i| < k_{\text{FDI}} \sqrt{\sigma_0^2 \left(1 + \mathbf{h}_i \mathbf{h}_i^T - 2\mathbf{h}_i[i]\right) + \mathbf{h}_i^T \mathbf{U}_i \mathbf{h}_i}$$

Takes into account measurement noise, sensor locations and modeling error

For fault isolation:

- ► For each vehicle, bank of *N* residuals *r_{ij}* excluding the *j*-th measurement
- Consensus between vehicles to identify the faulty sensors

Fault detection results

Find sensor locations (and associated formation shapes) that

- minimise estimate variance and modeling error influence
- take into account different sensor variances (faults)

Minimise a function of estimation error covariance matrix

$$\widehat{\boldsymbol{\Sigma}}_{\alpha_{i}^{k+1}} = \left(\overline{\boldsymbol{\mathsf{R}}}_{i,k+1}^{\mathsf{T}} \boldsymbol{\mathsf{W}}_{i,k+1} \overline{\boldsymbol{\mathsf{R}}}_{i,k+1}\right)^{-1}$$

under collision avoidance constraint $\|\mathbf{x}_i - \mathbf{x}_j\|_2^2 \ge R_{\text{safety}}^2, \ \forall \{i, j\}, j > i$

Several optimal design criteria (Walter & Pronzato 1987)

T-optimal solution

$$(\mathbf{x}_{1}(t_{k+1})\dots\mathbf{x}_{N}(t_{k+1})) = \arg \max_{(\mathbf{x}_{1},\dots,\mathbf{x}_{N})} \operatorname{tr} \left(\overline{\mathbf{R}}_{i,k+1}^{\mathsf{T}}\mathbf{W}_{i,k+1}\overline{\mathbf{R}}_{i,k+1}\right)$$

s.t. $\|\mathbf{x}_{i} - \mathbf{x}_{j}\|_{2}^{2} \ge R_{\operatorname{safety}}^{2}, \forall \{i,j\}, j > i.$

T-optimal solution

L

T

$$\mathbf{x}_{i}(t_{k+1}) = \widehat{\mathbf{x}}_{i}^{k+1}$$
 $\left\|\mathbf{x}_{i}(t_{k+1}) - \widehat{\mathbf{x}}_{i}^{k+1}\right\|_{2}^{2} = k_{w} - 1$

D-optimal solution

$$\begin{aligned} (\mathbf{x}_{1}(t_{k+1}) \dots \mathbf{x}_{N}(t_{k+1})) &= \arg \max_{(\mathbf{x}_{1}, \dots, \mathbf{x}_{N})} \det \left(\overline{\mathbf{R}}_{i,k+1}^{\mathsf{T}} \mathbf{W}_{i,k+1} \overline{\mathbf{R}}_{i,k+1} \right) \\ \text{s.t.} \ \|\mathbf{x}_{i} - \mathbf{x}_{j}\|_{2}^{2} \geqslant R_{\text{safety}}^{2}, \ \forall \{i, j\}, j > i. \end{aligned}$$

D-optimal solution

$$(\mathbf{x}_{1}(t_{k+1})...\mathbf{x}_{N}(t_{k+1})) = \arg\max_{(\mathbf{x}_{1},...,\mathbf{x}_{N})} \det\left(\overline{\mathbf{R}}_{i,k+1}^{\mathsf{T}}\mathbf{W}_{i,k+1}\overline{\mathbf{R}}_{i,k+1}\right)$$
s.t. $\|\mathbf{x}_{i} - \mathbf{x}_{j}\|_{2}^{2} \ge R_{\mathrm{safety}}^{2}, \forall \{i, j\}, j > i.$
Lagrangian $\mathscr{L} = \det\left(\overline{\mathbf{R}}_{i,k+1}^{\mathsf{T}}\mathbf{W}_{i,k+1}\overline{\mathbf{R}}_{i,k+1}\right) + \sum_{j>i} \mu_{ij}\left(\|\mathbf{x}_{i} - \mathbf{x}_{j}\|_{2}^{2} - R_{\mathrm{safety}}^{2}\right)$

Two solutions for $\mu_{ij} = 0$ (inactive constraints),

$$\mathbf{x}_{i}(t_{k+1}) = \widehat{\mathbf{x}}_{i}^{k+1}$$
 $\left\| \mathbf{x}_{i}(t_{k+1}) - \widehat{\mathbf{x}}_{i}^{k+1} \right\|_{2}^{2} = \frac{2k_{w}}{3}$

Numerical solutions

N = 3 agents, no faulty agent

N = 5 agents, D-optimal placement

Conclusion on T-optimal and D-optimal sensor placement

- All vehicles should be located on a circle with inactive constraints
- A faulty agent is placed further from the fleet, due to estimation weight

Sensor placement to minimize modeling error

Be as close as possible to estimation position

Formation characteristics

- T-optimal \rightarrow concentric circles
- ► D-optimal → compact formation around estimation position with active constraints

A. Kahn, J. Marzat, H. Piet-Lahanier, M. Kieffer, Cooperative estimation with outlier detection and fleet reconfiguration for multi-agent systems, IFAC Workshop on Multi-Vehicule Systems 2015

- Manage vehicle motions to respect sensor placement
- Locate field maximum
- A virtual point $\hat{\mathbf{x}}^k$ is used in a two-layer control law
 - High-level control
 - Move the virtual point to track the field maximum
 - Low-level control
 - Keep the agents in formation around the virtual point
 - Avoid collisions between vehicles

Gradient climbing of estimation position $\widehat{\mathbf{x}}^k$

$$\widehat{\mathbf{x}}^{k+1} = \widehat{\mathbf{x}}^k + \lambda^k \widehat{\nabla \phi} \left(\widehat{\mathbf{x}}^k \right) / \left\| \widehat{\nabla \phi} \left(\widehat{\mathbf{x}}^k \right) \right\|_2.$$

 $\widehat{\mathbf{x}}^k$ can be proven to converge to maximum for concave fields

Decentralized computation of estimation position is possible with incomplete communication graph

J. Marzat, A. Kahn, H. Piet-Lahanier Cooperative guidance of Lego Mindstorms NXT mobile robots, 11th International Conference on Informatics in Control, Automation and Robotics, Vienne Autriche, 2014

Vehicle dynamics

$$M\ddot{\mathbf{x}}_{i}(t) + C(\mathbf{x}_{i}(t), \dot{\mathbf{x}}_{i}(t))\dot{\mathbf{x}}_{i}(t) = \mathbf{u}_{i}(t)$$

Proposed control law (similar to Cheah, 2009)

$$\mathbf{u}_{i}(t) = M\ddot{\mathbf{x}}_{i}(t) + C(\mathbf{x}_{i}(t), \dot{\mathbf{x}}_{i}(t))\dot{\mathbf{x}}_{i}(t) - k_{1}\left(\dot{\mathbf{x}}_{i}(t) - \dot{\mathbf{x}}_{i}(t)\right)$$
$$+ 2k_{2}\sum_{j=1}^{N}\left(\mathbf{x}_{i}(t) - \mathbf{x}_{j}(t)\right)\exp\left(-\frac{(\mathbf{x}_{i}(t) - \mathbf{x}_{j}(t))^{T}(\mathbf{x}_{i}(t) - \mathbf{x}_{j}(t))}{q}\right)$$
$$- k_{3}^{i}(\eta_{i}, t)(\mathbf{x}_{i}(t) - \hat{\mathbf{x}}_{i}(t)),$$

$$V(\mathbf{X}(t)) = \frac{1}{2} \sum_{i=1}^{N} \left[(\dot{\mathbf{x}}_i(t) - \dot{\widehat{\mathbf{x}}}(t))^T M(\dot{\mathbf{x}}_i(t) - \dot{\widehat{\mathbf{x}}}(t)) + (\mathbf{x}_i(t) - \widehat{\mathbf{x}}(t))^T k_3^i(\mathbf{x}_i(t) - \widehat{\mathbf{x}}(t)) + k_2 \sum_{j=1}^{N} \exp\left(-\frac{(\mathbf{x}_i(t) - \mathbf{x}_j(t))^T (\mathbf{x}_i(t) - \mathbf{x}_j(t))}{q}\right) \right]$$

$$V(\mathbf{X}(t)) = \frac{1}{2} \sum_{i=1}^{N} \left[(\dot{\mathbf{x}}_i(t) - \dot{\widehat{\mathbf{x}}}(t))^T M(\dot{\mathbf{x}}_i(t) - \dot{\widehat{\mathbf{x}}}(t)) + (\mathbf{x}_i(t) - \hat{\mathbf{x}}(t))^T k_3^i(\mathbf{x}_i(t) - \hat{\mathbf{x}}(t)) + k_2 \sum_{j=1}^{N} \exp\left(-\frac{(\mathbf{x}_i(t) - \mathbf{x}_j(t))^T (\mathbf{x}_i(t) - \mathbf{x}_j(t))}{q}\right) \right]$$

Speed control term

$$V(\mathbf{X}(t)) = \frac{1}{2} \sum_{i=1}^{N} \left[(\dot{\mathbf{x}}_i(t) - \dot{\widehat{\mathbf{x}}}(t))^T M(\dot{\mathbf{x}}_i(t) - \dot{\widehat{\mathbf{x}}}(t)) + (\mathbf{x}_i(t) - \widehat{\mathbf{x}}(t))^T k_3^i(\mathbf{x}_i(t) - \widehat{\mathbf{x}}(t)) + k_2 \sum_{j=1}^{N} \exp\left(-\frac{(\mathbf{x}_i(t) - \mathbf{x}_j(t))^T (\mathbf{x}_i(t) - \mathbf{x}_j(t))}{q}\right) \right]$$

Position control term

$$V(\mathbf{X}(t)) = \frac{1}{2} \sum_{i=1}^{N} \left[(\dot{\mathbf{x}}_i(t) - \dot{\widehat{\mathbf{x}}}(t))^T M(\dot{\mathbf{x}}_i(t) - \dot{\widehat{\mathbf{x}}}(t)) + (\mathbf{x}_i(t) - \widehat{\mathbf{x}}(t))^T k_3^i(\mathbf{x}_i(t) - \widehat{\mathbf{x}}(t)) + k_2 \sum_{j=1}^{N} \exp\left(-\frac{(\mathbf{x}_i(t) - \mathbf{x}_j(t))^T (\mathbf{x}_i(t) - \mathbf{x}_j(t))}{q}\right) \right]$$

Collision avoidance term

$$V(\mathbf{X}(t)) = \frac{1}{2} \sum_{i=1}^{N} \left[(\dot{\mathbf{x}}_i(t) - \dot{\widehat{\mathbf{x}}}(t))^T M(\dot{\mathbf{x}}_i(t) - \dot{\widehat{\mathbf{x}}}(t)) + (\mathbf{x}_i(t) - \widehat{\mathbf{x}}(t))^T k_3^i(\mathbf{x}_i(t) - \widehat{\mathbf{x}}(t)) + k_2 \sum_{j=1}^{N} \exp\left(-\frac{(\mathbf{x}_i(t) - \mathbf{x}_j(t))^T (\mathbf{x}_i(t) - \mathbf{x}_j(t))}{q}\right) \right]$$

Control law can be proven to be Lyapunov stable

A. Kahn, J. Marzat, H. Piet-Lahanier, M. Kieffer, Cooperative estimation with outlier detection and fleet reconfiguration for multi-agent systems, IFAC Workshop on Multi-Vehicule Systems, Gênes Italie, 2015

Optimal sensor placement \rightarrow desired formation shape

Faulty agent $i \rightarrow \text{modified control law}$

$$k_3^i(\eta_i = 0) > k_3^i(\eta_i = 1)$$

Faulty agents are "pushed" far from the formation center

Local approach: complete loop simulation

Section 2

Robustesse aux défauts de capteurs sur plateformes expérimentales

Navigation autonome à base de vision

Partenariat Recherche Industrie SNCF Réseau – ONERA

Indoor : inspection d'infrastructures

27/34

Outdoor : suivi de linéaire, ouvrages d'art

Expérimentations drones sur sites SNCF pour preuve de concept

Chantier indoor : localisation et reconstruction d'environnement à base de vision, algorithmes de guidage pour navigation autonome

Plateforme expérimentale

Boucle complètement embarquée => robustesse à la perte de la liaison de données avec la station sol

Perception et commande : architecture intégrée

Perception et commande : architecture intégrée

Boucle similaire embarquée sur robot mobile Robotnik Summit XL

H. Roggeman, J. Marzat, M. Sanfourche, A. Plyer, Embedded vision-based localization and model predictive control for autonomous exploration, IROS Vicomor 2014

J. Marzat, J. Moras, A. Plyer, A. Eudes, P. Morin, Vision-based localization, mapping and control for autonomous MAV : EuRoC challenge results, ODAS 2015

Localisation basée vision : eVO

- Carte 3D d'amers appariés (stéréo) => pose de la caméra
- Mise à jour par mécanisme d'images-clés (nombre d'amers)

Incertitudes liées à la vision

- \rightarrow Besoin de fusion multi-capteurs et détection d'anomalies
- Robot mobile : eVO + encodeurs roues + IMU
- Drone : eVO + IMU + Iidar

M. Sanfourche, V. Vittori, G. Le Besnerais, eVO : a realtime embedded stereo odometry for MAV applications, IROS 2013

Test sur l'innovation (position), seuil fonction de la vitesse maximale

$$\begin{cases} \widehat{P}(k+1) = \widehat{P}(k) + \widehat{v}(k+1) \ \delta t \\ \widehat{v}(k+1) = \widehat{v}(k) + (R(k)\widehat{a}_{IMU} + g) \ \delta t \\ R(k) = R_{IMU} \end{cases}$$

IMU : acceleromètres + rotation

eVO : position

Test sur l'innovation (position), seuil fonction de la vitesse maximale

Stratégie de supervision

Une machine à état pour gérer tous les événements de mission

Stratégie de supervision

Une machine à état pour gérer tous les événements de mission

Résultats expérimentaux

Conclusions et perspectives

Localisation de source par une flotte de véhicules

- Estimation coopérative (modèle local) et placement optimal
- Détection et localisation de défauts de capteurs
- Commande de formation avec reconfiguration

Robustesse aux défauts de capteurs sur plateformes exp.

- Expérimentations en milieu industriel encombré
- Fusion multi-capteurs (vision et al.) avec détection d'anomalie
- Procédures de sécurité pour déploiement opérationnel

Perspectives

 Expérimentations à échelle réelle avec flottes de véhicules, incluant des fonctions de diagnostic et reconfiguration

