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Linear Time-Varying (LPV) system→ Modeling the nonlinear system:

Nonlinear System
ρ∈Pρ⇐===⇒

{
ẋ = A(ρ)x+B(ρ)u+W1(ρ)w

y = Cy(ρ)x+D(ρ)u+W2(ρ)w
(1)

where x is system state, u is control input, w is disturbance vector, ρ is measured or
estimated time-varying parameter, and parameter space Pρ:

Pρ = {ρ =
[
ρ1(t) ρ2(t) . . . ρp(t)

]T |ρi(t) ≤ ρi ≤ ρ̄i(t)},
∀ i = 1 : p, t ≥ 0.

Nonlinear Parameter-Varying System (NLPV)→ Handling ρ is nonlinear function

Boulkroune et al. [2015]→ Observer for the NLPV diesel engines with once
differentiable nonlinearity.

us Saqib et al. [2017], Yang et al. [2019]→H∞ output/state-feedback controller
for NLPV model.

Pham et al. [2019]→H∞ Luenberger observer for Suspension system with
non-linear damper force.

→ Parameter-independent stability (V = eTPe, P is constant) which may narrow the
feasible solution region.
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Singular LPV system→ LPV + Static Constraints

Nonlinear System
ρ∈Pρ⇐===⇒

{
Eẋ = A(ρ)x+B(ρ)u+W1(ρ)w

y = Cy(ρ)x+D(ρ)u+W2(ρ)w
(2)

⇔
{
ẋ1 = A1(ρ)x1 +B1(ρ)u+W11(ρ)w

y1 = C1(ρ)x+D1(ρ)u+W21(ρ)w︸ ︷︷ ︸
SLOW SUBSYSTEM

+

{
Nẋ2 = x2 +B1(ρ)u+W12(ρ)w

y2 = C2(ρ)x+D2(ρ)u+W22(ρ)w︸ ︷︷ ︸
FAST SUBSYSTEM

where N is nilpotent and y = y1 + y2.

Hamdi et al. [2012]→ UI PI observer with decoupling constraint.

Rodrigues et al. [2014]→ Fast adaptive estimation observer

Shi and Patton [2015]→H∞ proportional-derivative observer (singular observer).

López-Estrada et al. [2015]→H∞ functional observer for uncertainty in ρ.

→ Polytopic model where Cy(ρ) = C constant, which limits the implementation.
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Contributions of the presentation

1 A new class of singular NLPV with Lipschitz nonlinearity (S-NLPV) is introduced,
which unifies all so far existing kinds of LPV systems;

2 A H∞ observer design-based process for the S-NLPV system is studied. In
which, both disturbance attenuation and parameter-dependent stability are
ensured by solving LMI optimization under the Lipschitz constraint.
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S-NLPV system 
Eẋ = A(ρ)x+B(ρ)u+Bφ(ρ)φ(x, u) +D1(ρ)w

y = Cy(ρ)x+D2(ρ)w

z = Czx

(3)

where x ∈ Rnx is the state vector, y ∈ Rny is the measurement output vector,
u ∈ Rnu is the input vector, w ∈ Rnd is the disturbance vector with bounded energy,
and z ∈ Rnz is the vector of desired signals, which is a combination of x, to be
estimated (Cz = I → State-feedback controller; Cz 6= I →Output-feedback controller).

Assumptions

(A.1) Parameter variations are bounded. In other words, |ρ̇i| ≤ ϑi where ϑi is
non-negative constant boundness Wu et al. [1996].

(A.2) Nonlinear term φ(x, u) with u bounded (due to saturation in practice) is Lipschitz
function satisfying:

‖φ̃‖ = ‖φ(x, u)− φ(x̂, u)|| ≤ γ‖x− x̂‖ (4)

for all x, x̂ ∈ Rnx , where γ is known Lipschitz constant.

(A.3) S-NLPV system (3) is R-detectable (for slow subsystem) and impulse-free (for fast
subsystem) ∀ρ, which is analytically verified by the conditions discussed later.
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Objectives

=⇒ Determine a H∞ observer has the form:

NLPV observer 
ξ̇ = F(ρ)ξ + J(ρ)u+ L(ρ)y + T(ρ)Bφ(ρ)φ(x̂, u)

x̂ = ξ +N(ρ)y

ẑ = Cz x̂

, (5)

In which, ẑ is estimated state of z and the observer matrices F(ρ), J(ρ), T(ρ), L(ρ), and
N(ρ) are synthesized later.

Design Objectives

(O.1) When w∗ =
[
wT ẇT

]T
= 0 (explained later), estimation error dynamics are

asymptotically stable.

(O.2) When w∗ 6= 0, the impact of disturbance w∗ on the desired estimation error
ez = z − ẑ is attenuated, i.e.

sup
ρ∈Pρ

sup
‖w∗‖2 6=0,w∗∈L2

‖ez‖2
‖w∗‖2

≤ γ∞. (6)
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Define the state estimation error e = x− x̂:

e = T(ρ)Ex− ξ −N(ρ)D2(ρ)w, (7)

where T(ρ) has to ensure the constraint:

T(ρ)E +N(ρ)Cy(ρ) = I. (8)

Hence, the error dynamics is displayed as:

ė = F(ρ)e+ T(ρ)Bφ(ρ)φ̃+ (J(ρ) − T(ρ)B(ρ))u

+ (T(ρ)A(ρ) − F(ρ)T(ρ)E − L(ρ)Cy(ρ))x−N(ρ)D2(ρ)ẇ

+ [T(ρ)D1(ρ) + (F(ρ)N(ρ) − L(ρ))D2(ρ)]w (9)

Conditions→ Handle the coupling between e, x, and u

J(ρ) − T(ρ)B(ρ) = 0, (10)

T(ρ)A(ρ) − F(ρ)T(ρ)E − L(ρ)Cy(ρ) = 0, (11)

K(ρ) = −F(ρ)N(ρ) + L(ρ), (12)

Thereby, the dynamics (9) is rewritten as:

ė = F(ρ)e+ T(ρ)Bφ(ρ)φ̃+
[
(T(ρ)D1(ρ) −K(ρ)D2(ρ)) −N(ρ)D2(ρ)

]
w∗. (13)

=⇒ e depends on the nonlinear term φ̃ and the disturbance w∗ =
[
wT ẇT

]T .
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Decoupling condition between e and w∗{
T(ρ)D1(ρ) −K(ρ)D2(ρ) = 0,

N(ρ)D2(ρ) = 0.
(14)

→ Restrictive condition.
→ Unknown input observer design (discussed later).

If (14) is not satisfied
→H∞ observer design (main result of this representation)

→ Design process:
From Eqs. (8), (11) and (12), it follows that:

T(ρ)A(ρ) −K(ρ)Cy(ρ) − F(ρ) = 0. (15)

From conditions (8) and (15), we obtain:

[
T(ρ) N(ρ) F(ρ) K(ρ)

] 
E A(ρ)

Cy(ρ) 0
0 −I
0 −Cy(ρ)


︸ ︷︷ ︸

θ(ρ)

=
[
I 0

]︸ ︷︷ ︸
ψ

(16)
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If rank

[
θ(ρ)
ψ

]
= rank(θ(ρ))⇔ rank(θ(ρ)) = 2nx (Koenig [2005])

General Solution→ Derived from ψ and Moore-Penrose inverse of θ(ρ)[
T(ρ) N(ρ) F(ρ) K(ρ)

]
= ψθ†

(ρ)
− Z(ρ)(I − θ(ρ)θ

†
(ρ)

) = Γ1(ρ) − Z(ρ)Γ2(ρ) (17)

where Γ1(ρ) = ψθ†
(ρ)

, Γ2(ρ) = I − θ(ρ)θ
†
(ρ)

, and Z(ρ) is a parameter-dependent
arbitrary matrix calculated later.
It follows that:

T(ρ) = (Γ1(ρ) − Z(ρ)Γ2(ρ))δT , (18)

N(ρ) = (Γ1(ρ) − Z(ρ)Γ2(ρ))δN , (19)

F(ρ) = (Γ1(ρ) − Z(ρ)Γ2(ρ))δF , (20)

K(ρ) = (Γ1(ρ) − Z(ρ)Γ2(ρ))δK , (21)

where:

δT =


I
0
0
0

 , δN =


0
I
0
0

 , δF =


0
0
I
0

 , δK =


0
0
0
I

 . (22)
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Error Dynamics {
ė = F(ρ)e+Be(ρ)φ̃+W(ρ)w

∗,

ez = Cz(ρ)e
(23)

where ez = z − ẑ = Cz(ρ)(x− x̂) = Cze, δφ(ρ) = δTBφ(ρ); δ1(ρ) = δTD1(ρ),
δ2(ρ) = δKD2(ρ), δ3(ρ) = δND2(ρ), and

Be(ρ) = Γ1(ρ)δφ(ρ) − Z(ρ)Γ2(ρ)δφ(ρ), (24)

W(ρ) =
[
W1(ρ) W2(ρ)

]
, (25)

W1(ρ) = Γ1(ρ)(δ1 − δ2)− Z(ρ)Γ2(ρ)(δ1 − δ2), (26)

W2(ρ) = −(Γ1(ρ)δ3(ρ) − Z(ρ)Γ2(ρ)δ3(ρ)), (27)

Design Objectives→ Find Z(ρ) such that:

(O.1) When w∗ = 0, error dynamics are asymtotically stable.

(O.2) When w∗ 6= 0, the impact of disturbance w∗ on the desired estimation error
ez = z − ẑ is attenuated, i.e.

sup
ρ∈Pρ

sup
‖w∗‖2 6=0,w∗∈L2

‖ez‖2
‖w∗‖2

≤ γ∞. (28)
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Design Solution

Theorem 1.

Under the assumptions (A.1)-(A.3), the design objectives (O.1)-(O.2) are achieved if
there exist symmetric positive definite matrices P(ρ) and matrix Y(ρ), positive scalar ε
which minimize γ∞ and satisfy that:

Ω11(ρ) + η Ω12(ρ) Ω13(ρ) Ω14(ρ) CTz
(∗) −εI 0 0 0
(∗) (∗) −γ∞I 0 0
(∗) (∗) (∗) −γ∞I 0
(∗) (∗) (∗) (∗) −I

 < 0, (29)

then the matrix Z(ρ) is calculated by: Z(ρ) = −P−1
(ρ)

Y(ρ).

Ω11(ρ) =

p∑
i

±ϑi
∂P(ρ)

∂ρi
+H{P(ρ)Γ1(ρ)δF + Y(ρ)Γ2(ρ)δF }, (30)

Ω12(ρ) = P(ρ)Γ1(ρ)δφ + Y(ρ)Γ2(ρ)δφ, (31)

(32)
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Ω13(ρ) = P(ρ)Γ1(ρ)(δ1 − δ2) + Y(ρ)Γ2(ρ)(δ1 − δ2), (33)

Ω14(ρ) = −(P(ρ)Γ1(ρ)δ3 + Y(ρ)Γ2(ρ)δ3), (34)

η = ε(γI)T (γI), (35)

Remark 1: The notion
p∑
i
±(.) expresses all combinations of +(.) and −(.) that should

be included in the inequality (29). Consequently, the inequality (29) actually represents
2p different inequalities that correspond to the 2p different combinations in the
summation.
Proof: Proof is demonstrated later.

From Z(ρ) obtained in Theorem 1→ Observer Matrices:

T(ρ) = (Γ1(ρ) − Z(ρ)Γ2(ρ))δT , (36)

N(ρ) = (Γ1(ρ) − Z(ρ)Γ2(ρ))δN , (37)

F(ρ) = (Γ1(ρ) − Z(ρ)Γ2(ρ))δF , (38)

K(ρ) = (Γ1(ρ) − Z(ρ)Γ2(ρ))δK , (39)

J(ρ) = T(ρ)B(ρ), (40)

L(ρ) = K(ρ) + F(ρ)N(ρ). (41)
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Numerical Model

S-NLPV system 
Eẋ = A(ρ)x+Bu+Bφsin(Kx)u+D1w

y = Cy(ρ)x+D2w

z = Czx

(42)

Desired signal z =
[
zT1 zT2 zT3

]T is the output vector to be estimated.
Varying-parameter ρ are defined as: ρ = 0.25sin(8t) + 0.75
System parameters are chosen as following:

E =

1 0 0
0 1 0
0 0 0

, A(ρ) =

−5 + ρ 1 1
0 −5 0

0.5 0 −1

,

B =

 0
0.2
0.5

, Bφ =

 0
0.2
0

, Cy(ρ) =

[
1 1 0.2ρ
0 2 −1

]
,

D1 =

0.5
0.1
0

, D2 =

[
0

0.01

]
, Cz =

1 0 0
0 1 0
0 0 1

,

and K =
[
0 0 1

]
, which satisfy the conditions (C.1) and (C.2).

Control input u is bounded in region |u| ≤ u0 = 5→ Lipschitz condition:

‖φ(x, u)− φ(x̂, u)|| ≤ u0K‖x− x̂‖, (43)

where φ(x, u) = sin(Kx)u and γ = u0K.DO Manh-Hung [GIPSA-lab] 21/46
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H∞ observer design

Grid-based solution→ Solving Theorem 1

Singular LPV
Time-frozen ρj⇐========⇒ Singular Linear Time-Invariant (LTI) (44)

where j = 1 : N , N = nρ1g × nρ2g × . . . n
ρp
g , and nρig , expressing the number of

gridding points for element ρi of vector ρ.
Basic functions: The matrices P(ρ) and Y(ρ) are chosen as polynomial functions of ρ:

P(ρ) = P0 + ρP1 + ρ
2
P2, (45)

Y(ρ) = Y0 + ρY1 + ρ
2
Y2, (46)

P0, P1, P2, Y0, Y1, and Y2 are constant matrices found later by Theorem 1.
Number of gridding points: p = 1 (1 element of ρ) and ng = 20 points, so ng values
ρj (j = 1 : ng).

At each time-frozen values ρj , LPV system is treated as a LTI system at each ρj
=⇒ Frequency analysis for ρ1, ρ10, and ρ20 are presented:

Sezw(ρj) = Cz(ρj)(pI − F(ρj))
−1W1(ρj), (47)

Sezẇ(ρj) = Cz(ρj)(pI − F(ρj))
−1W2(ρj), (48)

Sez φ̃(ρj) = Cz(ρj)(pI − F(ρj))
−1Be(ρj). (49)

Toolbox Yalmip Lofberg [2004] and solver sdpt3 Toh et al. [1999] for 0.5 ≤ ρ ≤ 1
and |ρ̇| ≤ ϑ = 2.
Optimal H∞ performance: γ∞ = 0.0014 (or −56.9662 dB) and ε = 50.5071.
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Frequency Analysis: Disturbance w to ez estimation error

Sensitivity functions: |Sezw| = |ez |/|w|. (ez = ex as Cz = I)
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Figure 1: Sensitivity function |Sezw| = |ez/w|

=⇒ |Sezw| < γ∞ (-56.9662 dB)
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Frequency Analysis: Disturbance ẇ to ez estimation error

Sensitivity function:|Sezẇ| = |ez |/|ẇ|. (ez = ex as Cz = I)
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Figure 2: Sensitivity function |Sezẇ| = |ez/ẇ|

=⇒ |Sezẇ| < γ∞ (-56.9662 dB)
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Frequency Analysis: Nonlinearity to ez estimation error

Sensitivity function:|Sez φ̃| = |ez |/|φ̃|. (ez = ex as Cz = I)
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Figure 3: Sensitivity function |Sezφ̃| = |ez/φ̃|

=⇒ Difference of nonlinearity term φ̃ can affect the accuracy of estimation, especially
x1 and x2.
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Test Condition

The time-domain simulation is realized with the following conditions:

Duration: 3 seconds.

Disturbance vector is defined as:

w = sin(4πt). (50)

Control input:

u = u0sin(8πt). (51)

Initial condition: x1(0) = 0, x2(0) = 0 and x̂0 =
[
0.005 0 0.02

]T .
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Figure 4: x1 and x2 estimation
=⇒ Impact of φ̃ on x1 and x2 as mentioned in Frequency Analysis.DO Manh-Hung [GIPSA-lab] 27/46
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Figure 5: x3 estimation

Table 1: Evaluation for estimation error

Signal ex1 ex2 ex3
RMS (Root-mean-square) 0.0192 0.0143 0.0071
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H∞ observer’s drawbacks

Problem 1:

y = Cy(ρ)x+D2w =

[
1 1 0.2ρ
0 2 −1

]
x+

[
0

0.01

]
w (52)

=⇒ w has a direct transfer to output y, so H∞ norm is not effective.

Problem 2:
The number of signal z =⇒ Effectiveness of optimization ‖ez‖2‖w∗‖2

≤ γ∞

z = x −→ Cz =

1 0 0
0 1 0
0 0 1

 −→ 6 optimizations: 3 for
‖ez‖2
‖w‖2

≤ γ∞, 3 for
‖ez‖2
‖ẇ‖2

≤ γ∞

=⇒ 2nd Simulation: Verify above problems

z = C̄zx, C̄z =
[
1 −1 0

]
−→ 2 optimizations: 1 for

‖ez‖2
‖w‖2

≤ γ∞, 1 for
‖ez‖2
‖ẇ‖2

≤ γ∞

=⇒
[
y
ẑ

]
=

[
Cy(ρ)
C̄z

]
x+

[
D2

0

]
w −→ x̂ ≈

[
Cy(ρ)
C̄z

]−1 [
y
ẑ

]
(53)
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Figure 6: x1 and x2 estimation
=⇒ Better estimation of x1 and x2 compared with 1st simulation.DO Manh-Hung [GIPSA-lab] 30/46
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Figure 7: x3 estimation

Table 2: Evaluation for estimation error

Simulation 1 Simulation 2
γ∞ −56.9691 dB −56.9685 dB
RMS ex1 0.0192 0.0039
RMS ex2 0.0143 0.0032
RMS ex3 0.0071 0.0082
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Existing Conditions of H∞ observer design

Grid-based solution→ Solving Theorem 1

Singular LPV
Time-frozen ρj⇐========⇒ Singular Linear Time-Invariant (LTI) (54)

where j = 1 : N , N = nρ1g × nρ2g × . . . n
ρp
g .

=⇒ (A.3): "System (3) is R-detectable and impulse-free" is analytically verified at each
ρj in the grid.

Stability of error dynamics: ė = F(ρ)e+Be(ρ)φ̃+W(ρ)w
∗

If Theorem 1 is feasible
⇒ F(ρ) =(ρ) A(ρ) −K(ρ)Cy(ρ) = Γ1(ρ)φAC(ρ) − Z(ρ)Γ2(ρ)φAC(ρ) is Hurwitz.
⇒ Existence of Z(ρ) to stabilize F(ρ)

⇒ Pair (Γ1(ρ)φAC(ρ),Γ2(ρ)φAC(ρ)) is detectable.

⇒ rank

[
sI − Γ1(ρ)φAC(ρ)

Γ2(ρ)φAC(ρ)

]
= nx∀ρ =⇒ rank

[
sE −A(ρj)

C(ρj)

]
= nx,

∀j = 1 : N,R(s) ≥ 0. (55)

=⇒ R-detectability of slow subsystem in singular system.
General solution:

rank(θ(ρ)) = 2nx∀ρ⇔ rank

[
E

Cy(ρ)

]
= nx∀ρ =⇒ rank

[
E

C(ρj)

]
= nx, ∀j = 1 : N.

(56)=⇒ Impulse-free condition for fast components.
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Impulse-free condition is violated
=⇒ but rank

[
E Bφ(ρj)

]
= rank(E) = r and impulse observable (I-observability)

rank

E A(ρj)

0 E
0 C(ρj)

 = nx + rank(E) (57)

=⇒ Transformation

(S.1)


Eẋ = A(ρ)x+B(ρ)u

+Bφ(ρ)φ(x, u) +D1(ρ)w

y = Cy(ρ)x+D2(ρ)w

z = Czx

(*)⇐⇒ (S.2)


E∗ẋ = A∗

(ρ)
x+B∗

(ρ)
u

+B∗
φ(ρ)

φ(x, u) +D∗
1(ρ)

w

y∗ = C∗
y(ρ)

x+D∗
2(ρ)

w

z = Czx

(*) Koenig and Mammar [2002]

∃M : M
[
E Bφ(ρ)

]
=

[
E∗ B∗

φ(ρ)

0 0

]
, rank(E∗) = r,MA(ρ) =

[
A∗

(ρ)

A∗
1(ρ)

]
,

MB(ρ) =

[
B∗

(ρ)

B∗
1(ρ)

]
,MD1(ρ) =

[
D∗

1(ρ)

D∗
11(ρ)

]
, y∗ =

[
−B∗

1(ρ)
u

y

]
=

[
A1(ρ)

Cy(ρ)

]
x+

[
D∗

11(ρ)

D2(ρ)

]
w

=⇒ (S.2) is R-detectable and impulse-observable (impulse observability = condition for
general solution in observer design).
=⇒H∞ NLPV observer design (5) with u and y∗.
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Unknown input observer-based Approach

Error Dynamics (13) is recalled

ė = F(ρ)e+ T(ρ)Bφ(ρ)φ̃+
[
(T(ρ)D1(ρ) −K(ρ)D2(ρ)) −N(ρ)D2(ρ)

]
w∗.

Decoupling condition between e and w∗

T(ρ)D1(ρ) −K(ρ)D2(ρ) = 0, (58)

N(ρ)D2(ρ) = 0. (59)

[
T(ρ) N(ρ) F(ρ) K(ρ)

] 
E A(ρ) D1(ρ) 0

Cy(ρ) 0 0 D2(ρ)

0 −I 0 0
0 −Cy(ρ) −D2(ρ) 0


︸ ︷︷ ︸

θUI(ρ)

=
[
I 0 0 0

]︸ ︷︷ ︸
ψUI

,

(60)

If rank

[
θUI(ρ)
ψUI

]
= rank(θUI(ρ))⇔ rank(θUI(ρ)) = 2nx + 2nw then

[
T(ρ) N(ρ) F(ρ) K(ρ)

]
= ψUIθ

†
UI(ρ)

− Z(ρ)(I − θ(ρ)θ
†
UI(ρ)

) = Γ1UI(ρ) − Z(ρ)Γ2UI(ρ)

(61)
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Error Dynamics {
ė = F(ρ)e+ T(ρ)Bφ(ρ)φ̃

ez = Cze
(62)

where

F(ρ) = Γ1UI(ρ)φAC(ρ) − Z(ρ)Γ2UI(ρ)φAC(ρ)) (63)

T(ρ)Bφ(ρ) = Γ1UI(ρ)δφ(ρ) − Z(ρ)Γ2UI(ρ)δφ(ρ) (64)

Existing conditions
R-Detectability

rank

[
sI − Γ1UI(ρ)φAC(ρ)

Γ2UI(ρ)φAC(ρ)

]
= nx∀ρ =⇒ rank

[
sE −A(ρj) D1(ρj)

C(ρj) D2(ρj)

]
= nx + nw,

∀j = 1 : N,Re(s) > 0. (65)

Existence of General solution:

rank(θUI(ρ)) = 2nx + 2nw∀ρ =⇒ rank

 E D1(ρj) 0

C(ρj) 0 D2(ρj)

0 −D2(ρj) 0

 = nx + 2nw,

∀j = 1 : N. (66)
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Corollary 1.

Under the assumptions (A.1)-(A.3), the design objectives (O.1)-(O.2) are achieved if
there exist symmetric positive definite matrices P(ρ) and matrix Y(ρ), positive scalar ε
which minimize γ∞ and satisfy that:Ω11(ρ) + η Ω12(ρ) CTz

(∗) −εI 0
(∗) (∗) −I

 < 0, (67)

then the matrix Z(ρ) is calculated by: Z(ρ) = −P−1
(ρ)

Y(ρ).

Ω11(ρ) =

p∑
i

±ϑi
∂P(ρ)

∂ρi
+H{P(ρ)Γ1UI(ρ)δF + Y(ρ)Γ2UI(ρ)δF }, (68)

Ω12(ρ) = P(ρ)Γ1UI(ρ)δφ + Y(ρ)Γ2UI(ρ)δφ, (69)

η = ε(γI)T (γI), (70)

Proof is easily derived from Theorem 1.

DO Manh-Hung [GIPSA-lab] 37/46



About me Overview on LPV system Problem formulation NLPV Observer design Numerical Example Discussion Conclusion & Future work References

Contents

1 About me

2 Overview on LPV system

3 Problem formulation

4 NLPV Observer design

5 Numerical Example

6 Discussion
Existing Conditions of H∞ observer design
Unknown input observer-based Approach

7 Conclusion & Future work

DO Manh-Hung [GIPSA-lab] 38/46



About me Overview on LPV system Problem formulation NLPV Observer design Numerical Example Discussion Conclusion & Future work References

Conclusion & Future work

Conclusion

A new class of singular NLPV system with Lipschitz nonlinearity is introduced,
which promotes the implementation of the LPV framework in modeling the
nonlinear system.

H∞ NLPV observer design with parameter-dependent stability is considered to
attenuate the disturbance impact on estimation error.
Advantages:

Disturbance-decoupling condition is relaxed.
Output y can be dependent on ρ.
P(ρ) in Lyapunov function widens the feasible region of LMI solution.

Drawbacks:
H∞ performance is not always good if optimized vectors has high dimension or output
disturbance exists.
γ in Lipschitz constraint is maximal boundness, which can make solution conservative.
Assumption (A.1) for the boundness of ρ̇ can not be always satisfied. For example,
ρ = u, control input which varies so fast due to controller/environment.
Assimption (A.3) for condition is also restrictive comparing to impulse observability.

Numerical simulation has proven the capability of the proposed observer design in
attenuating the disturbance impact under the existence of Lipschitz nonlinearity
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Future work

Existence of uncertainty to stability of S-NLPV
Parametric uncertainty:{

Eẋ = (A(ρ) + ∆A(ρ))x+ B(ρ)u+ Bφ(ρ)φ(x, u) +D1(ρ)w

y = Cy(ρ)x+D2(ρ)w
(71)

where ∆A(ρ) is uncertain term.
Uncertainty of ρ, i.e. incorrect estimation/measurement → ρ̂ is input for observer:


ξ̇ = F(ρ̂)ξ + J(ρ̂)u+ L(ρ)y + T(ρ̂)Bφ(ρ̂)φ(x̂, u)

x̂ = ξ +N(ρ̂)y

ẑ = Cz x̂

, (72)

Impact of the time-delay problem on S-NLPV
Eẋ(t) = A(ρ)x(t) +Ad(ρ)x(t− h(t)) +B(ρ)u(t) +Bd(ρ)u(t− h(t))

+Φ(x(t), x(t− h(t)), u(t), u(t− h(t)), t, h(t), ρ(t)) +D1(ρ)w(t)

y(t) = Cx(t) +D2w(t)

x(t) = $x(t), t ∈ [−h̄, 0]

=⇒ Submission for IEEE-TAC.
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Proof for Theorem 1

Choose the parameter-dependent LPV Lyapunov functional Apkarian et al. [1995]:

V(ρ) = eTP(ρ)e (73)

where P(ρ) > 0 and V̇(ρ) = eT
∂P(ρ)

∂t
e+ eTP(ρ)ė+ ėTP(ρ)e.

Combined with the above Lyapunov function, the sufficient condition for disturbance
attenuation (28) can be rewritten as (Wu et al. [1996]):

J∞ = V̇(ρ) + eTz ez − γ∞w∗Tw∗ < 0. (74)

Also, the Lipschitz condition (4) yields the constraint:

‖φ̃‖ ≤ γ‖e‖ ⇒ J = (φ̃)T (φ̃)− eT (γI)T (γI)e ≤ 0, (75)

By applying the S-procedure (Boyd et al. [1994]), the two above constraints in Eqs.
(74)-(75) can be achieved if there exists a positive scalar ε such that:

J∞ − εJ < 0 (76)
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Using error dynamics (23), we obtain:

V̇(ρ) ≤ ΥT

Ω11(ρ) Ω12(ρ)

[
Ω13(ρ) Ω14(ρ)

]
(∗) (∗) 0
(∗) (∗) 0

Υ = ΥTΩ(ρ)Υ, (77)

where Υ =
[
eT φ̃T w∗T

]T .
The constraint (76) J∞ − εJ < 0 is guaranteed if:

ΥTΩ(ρ)Υ + eTCTz Cze− γ∞w∗Tw∗ − ε(φ̃)T (φ̃) + εeT (γI)T (γI)e < 0, (78)

which is equivalent to the following LMI ∀Υ 6= 0:
Ω′

11(ρ)
+ CTz Cz + η Ω12(ρ) Ω13(ρ) Ω14(ρ)

(∗) −εI 0 0
(∗) (∗) −γ∞I 0
(∗) (∗) (∗) −γ∞I

 < 0, (79)

where Ω′
11(ρ)

= ρ̇
∂P(ρ)

∂ρ
+H{P(ρ)Γ1(ρ)δF + Y(ρ)Γ2(ρ)δF }.

To avoid directly handling the derivative ρ̇, as mentioned in Wu et al. [1996]

ρ̇
∂P(ρ)

∂ρ
→

p∑
i

±ϑi
∂P(ρ)

∂ρi
(80)

Apply the Schur Complement, the simplified condition (29) is verified.
=⇒ Proof is completed.
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