On Unknown Input Observers for LTI and LPV systems

Dalil Ichalal and Saïd Mammar

IBISC-Lab Université d'Evry-Val-d'Essonne - Université Paris Saclay

GDR MACS - GT S3 - Paris, France.

Image: A math a math

March 5th 2020

1 Asymptotic Decoupling Approach

- Problem Statement
- Unknown Input Observer: Asymptotic decoupling notion
- Simulation results: Discrete-time case
- Simulation results: Continuous-time case

2 Unknown Input Observer for LPV Systems

- Problem Statement
- LPV UIO: Proposed solution
- Simulation results

3 Conclusion and perspectives

Image: A math a math

1 Asymptotic Decoupling Approach

- Problem Statement
- Unknown Input Observer: Asymptotic decoupling notion
- Simulation results: Discrete-time case
- Simulation results: Continuous-time case

2 Unknown Input Observer for LPV Systems

- Problem Statement
- LPV UIO: Proposed solution
- Simulation results

3 Conclusion and perspectives

イロト イヨト イヨト イ

$$x_{k+1} = Ax_k + Bu_k + Ed_k$$
(1)
$$y_k = Cx_k$$
(2)

with:

- $d_k \in \mathbb{R}^{n_d}$: Unknown Input vector
- $u_k \in \mathbb{R}^{n_u}$: Known Input vector
- $y_k \in \mathbb{R}^{n_y}$: Measured output vector
- $x_k \in \mathbb{R}^n$: Unmeasured state vector
- A, B, E and C are known real matrices with appropriate dimensions

Objective

Estimate asymptotically the state x(t) from only the knowledge of u_k and y_k and the model in the presence of unknoon inputs d_k .

< □ > < 同 > < 回 > < Ξ > < Ξ

$$x_{k+1} = Ax_k + Bu_k + Ed_k$$
(3)

$$y_k = Cx_k$$
(4)

Classical Unknown Input Observer

$$z_{k+1} = N z_k + G u_k + L y_k \tag{5}$$

$$\hat{x}_k = z_k - H y_k \tag{6}$$

イロト イヨト イヨト イヨ

Find the matrices N, G, L and H in order to:

- **(**) decouple the state estimation error from d_k
- 2 ensure $e_k \rightarrow 0$ when $k \rightarrow +\infty$

$$\begin{aligned} x_{k+1} &= Ax_k + Bu_k + Ed_k \\ y_k &= Cx_k \end{aligned} \tag{7}$$

Classical Unknown Input Observer

$$z_{k+1} = N z_k + G u_k + L y_k \tag{9}$$

$$\hat{x}_k = z_k - H y_k \tag{10}$$

イロト イヨト イヨト イヨ

The state estimation error dynamics is:

$$e_{k+1} = Ne_k + \underbrace{(PA - LC - N - NHC)}_{=0} x_k + \underbrace{(PB - G)}_{=0} u_k + \underbrace{PE}_{=0} d_k$$
$$P = I + HC$$

Classical Unknown Input Observer

N = PA - LC - NHCPB - G = 0PE = 0P = I + HC

Necessary and Sufficient existence conditions (Darouach et al 1994, IEEE TAC)

- rank(CE) = rank(E)
- All invariant zeros of the triplet (A, C, E) are located inside the unit circle (Stable invariant zeros)

Problem

() If the internal dynamics are slow \rightarrow the error dynamics is considerably affected

< □ > < □ > < □ > < □ > < □ >

$$x_{k+1} = Ax_k + Bu_k + Ed_k \tag{11}$$

$$y_k = C x_k \tag{12}$$

Image: A math the second se

Objective

How to estimate asymptotically the state x_k and enhance the convergence rate in the presence of stable but sable invariant zeros

$$x_{k+1} = Ax_k + Bu_k + E\frac{d_k}{d_k} \tag{13}$$

$$y_k = C x_k \tag{14}$$

Asymptotic Decoupling notion

The condition (I + HC)E = 0 is replaced by $(I + M_k C)E \rightarrow 0$ when $k \rightarrow +\infty$

Assumptions

- rank(CE) = rank(E)
- The pair (A, C) is observable
- *d_k* is bounded

 \rightarrow How to do it in order to preserve the observability at least in a short interval time?

→ Solution: Asymptotic decoupling

Ichalal and Mammar IEEE TAC 2020 (Continuous-time), IEEE Control Letters

2020, IEEE CDC 2019 (Discrete-Time)

< □ > < □ > < □ > < □ > < □ >

• The proposed LTV observer has the form:

$$z_{k+1} = N_k z_k + G_k u_k + L_k y_k$$
(15)

$$\hat{x}_k = z_k - M_k y_k \tag{16}$$

The matrices N_k , G_k , L_k and M_k are time-dependent matrices which will be defined later in order to ensure asymptotic convergence of the state estimation error $e_k = x_k - \hat{x}_k$.

Choice of H_k

The matrix H_k is chosen in such a way that when $k \to +\infty$, it converges to M and defined by

$$M_{k} = (1 - f(k)) H = \left(1 - \rho \alpha^{k}\right) H$$
(17)

(日)

f(k) is a time decreasing function which converges to zero (i.e. $0 < \alpha < 1$). *H* is computed in the same way as in the classical UIO. • The state estimation error is defined by the equation

$$e_k = x_k - \hat{x}_k \tag{18}$$

$$= \underbrace{(I+M_kC)}_{P_k} x_k - z_k \tag{19}$$

• its dynamics obeys to the following difference equation

$$e_{k+1} = (P_{k+1}A - N_kP_k - L_kC)x_k + (P_{k+1}B - G_k)u_k + P_{k+1}Ed_k + N_ke_k$$
(20)

• Under the conditions

$$P_{k} = I + M_{k}C$$

$$P_{k+1}A - N_{k}P_{k} - L_{k}C = 0$$

$$P_{k+1}B - G_{k} = 0$$

are satisfied $\forall k$, the state estimation error dynamics is reduced to

$$e_{k+1} = N_k e_k + S_k d_k \tag{21}$$

• State estimation error dynamics is:

$$e_{k+1} = N_k e_k + S_k d_k \tag{22}$$

where:

•
$$S_k = P_{k+1}E$$

• $N_k = P_{k+1}A - K_kC$
• $K_k = L_k + N_kM_k$
• $P_{k+1} = I + HC - \rho\alpha\alpha^k HC$

$$\lim_{k \to +\infty} S_k = \lim_{k \to +\infty} (I + HC)E - \rho \alpha \alpha^k HCE$$
(23)

$$= \lim_{k \to +\infty} (-\rho \alpha \alpha^k HCE) = 0$$
 (24)

・ロト ・日下・ ・ ヨト・

• Error dynamics:

$$e_{k+1} = N_k e_k + S_k d_k \tag{25}$$

• Polytopic transformation:

$$e_{k+1} = \sum_{i=1}^{2} h_i(k) ((A_i - T_i C) e_k + S_i d_k)$$
(26)

where

$$\mathcal{A}_1 = \mathcal{A} + \mathcal{H}C\mathcal{A} - \rho\alpha\mathcal{H}C\mathcal{A}, \quad \mathcal{A}_2 = \mathcal{A} + \mathcal{H}C\mathcal{A}$$
(27)

$$S_1 = -\rho \alpha HCE, \quad S_2 = 0$$
 (28)

・ロト ・日下・ ・ ヨト・

Theorem

Given positive scalars μ and η such that $0 < \eta < \frac{1}{1+\mu}$. For $\tau_1 = \eta (1+\mu)$ and $\tau_2 = \eta$, if there exist symmetric and positive definite matrices $X \in \mathbb{R}^{n \times n}$ and $G_i \in \mathbb{R}^{n \times n}$, gains matrices $\overline{T}_i \in \mathbb{R}^{n \times n_y}$, i = 1, 2 and a positive scalar γ such that the following LMIs hold

$$\begin{bmatrix} (\tau_{1}-1)X & \mathcal{A}_{1}^{T}G_{1}^{T}-C^{T}\bar{T}_{1}^{T} & \Gamma_{1} \\ G_{1}\mathcal{A}_{1}-\bar{T}_{1}C & X-2G_{1} & 0 \\ \Gamma_{1}^{T} & 0 & \Omega_{1} \end{bmatrix} < 0$$
(29)

$$\begin{bmatrix} (\tau_2 - 1)X & \mathcal{A}_2^T \mathcal{G}_2^T - \mathcal{C}^T \bar{\mathcal{T}}_2^T \\ \mathcal{G}_2 \mathcal{A}_2 - \bar{\mathcal{T}}_2 \mathcal{C} & X - 2\mathcal{G}_2 \end{bmatrix} < 0$$
(30)

$$\Gamma_{1} = (\mathcal{A}_{1}^{T} G_{1}^{T} - C^{T} \bar{T}_{1}^{T}) S_{1}, \quad \Omega_{1} = 2S_{1}^{T} G_{1} S_{1} - \gamma S_{1}^{T} S_{1}$$
(31)

then the state estimation error converges asymptotically towards zero.

イロト イ団ト イヨト イヨト

$$A = \begin{bmatrix} 0.5 & -0.3847 & 0.7036 \\ 0 & 0.7 & 0.5468 \\ 0 & 0 & -0.8 \end{bmatrix}, E = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$C = \begin{bmatrix} -0.3518 & -0.2734 & 0.5 \end{bmatrix}$$

The pair (A, C) is observable and the invariant zeros of the system are located at $z_1 = 0.995$ and $z_2 = 0.999$.

$$H = -E(CE)^{-1} = \begin{bmatrix} 0 & 0 & -2 \end{bmatrix}^T$$

The function f_k is defined by $f_k = 0.993^k$ according to Definition ??. The parameter η should be chosen such that

$$\max_{i=1,2} \left(|z_i| \right) < 1-\eta < 1$$

Image: A math the second se

Figure: Comparison of state estimations: Proposed LTV UIO and classical LTI UIO

・ロト ・日下・ ・ ヨト・

Figure: Comparison of state estimation errors: Proposed LTV UIO and classical LTI UIO

・ロト ・日下・ ・ ヨト・

Figure: Time evolution of the eigenvalues of the matrix N_k

D. Ichalal (IBISC)

イロト イヨト イヨト イヨ

Consider the Linear model of a DC Motor described by:

$$\dot{x} = Ax + Ed, \quad y = Cx$$

$$A = \begin{bmatrix} -\frac{R}{L} & 0 & -\frac{a}{L} \\ 0 & 0 & 1 \\ \frac{b}{m} & -\frac{k}{m} & -\frac{f}{m} \end{bmatrix}, E = \begin{bmatrix} -\frac{1}{L} \\ 0 \\ 0 \end{bmatrix}$$

and $C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$. The existence conditions of the classical design are satisfied and the invariant zeros are $-0.05 \pm i9.999$.

イロト イ団ト イヨト イヨ

Simulation results: Continuous-time case

Figure: Real states (blue) and estimations (red)

D.	Ichalal	(IBISC)
		(

(口)

Simulation results: Continuous-time case

Figure: State estimation error comparison

D. Ichalal (IBISC)

・ロト ・回ト ・ヨト

Asymptotic Decoupling Approach

- Problem Statement
- Unknown Input Observer: Asymptotic decoupling notion
- Simulation results: Discrete-time case
- Simulation results: Continuous-time case

2 Unknown Input Observer for LPV Systems

- Problem Statement
- LPV UIO: Proposed solution
- Simulation results

3 Conclusion and perspectives

< □ > < 同 > < 回 > < Ξ > < Ξ

LPV system affected by Unknown Inputs

$$\dot{x} = A(\rho)x + B(\rho)u + E(\rho)d, \quad y = C(\rho)x$$

Classical approach

• Polytopic transformation at the beginning

$$\dot{x} = \sum_{i=1}^{r} h_i(\rho) \left(A_i x + B_i u + E_i d \right), \quad y = C x$$

• The UIO uses the same polytopic form:

$$\dot{z} = \sum_{i=1}^{r} h_i(\rho) \left(N_i x + G_i u + L_i d \right), \quad \hat{x} = z - Hy$$

Existing solutions

- Replacing E_i by E^* solution to min_i $||E^* E_i||_F$ (Rodriguez and Theilliol 2005)
- $E(\rho)d = E_1\overline{E}(\rho)d = E_1f$ (Alwi and Edwards 2014)
- $rank(C[E_1...E_r]) = rank([E_1...E_r])$ (Marx and Ragot 2007, Chadli and Karimi 2013)

LPV system affected by Unknown Inputs

$$\dot{x} = A(\rho)x + B(\rho)u + E(\rho)d, \quad y = C(\rho)x$$

Classical approach

• Polytopic transformation at the beginning

$$\dot{x} = \sum_{i=1}^{r} h_i(\rho) \left(A_i x + B_i u + E_i d \right), \quad y = C x$$

• The UIO uses the same polytopic form:

$$\dot{z} = \sum_{i=1}^{r} h_i(\rho) \left(N_i x + G_i u + L_i d \right), \quad \hat{x} = z - H_y$$

State estimation error dynamics $e = x - \hat{x}$

$$\dot{e} = \sum_{i=1}^{r} h_i(\rho) \left(N_i e + \underbrace{(PA_i - L_i C - N_i P)}_{=0} x + \underbrace{(PB_i - G_i)}_{=0} u + \underbrace{PE_i}_{=0} d \right)$$

D. Ichalal (IBISC)

Consider the LPV system affected by the unknown input d:

$$\begin{cases} \dot{x}(t) = \begin{pmatrix} 0 & \rho(t) \\ 1 - \rho(t) & -3 \end{pmatrix} x(t) + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u(t) + \begin{pmatrix} \rho(t) \\ \rho(t) + 1 \end{pmatrix} d(t) \\ y(t) = \begin{pmatrix} 1 & 0 \end{pmatrix} x(t) \end{cases}$$

with a bounded parameter: $2 \le \rho(t) \le 4$

・ロト ・日下・ ・ ヨト・

Consider the LPV system affected by the unknown input d:

$$\begin{cases} \dot{x}(t) = \begin{pmatrix} 0 & \rho(t) \\ 1 - \rho(t) & -3 \end{pmatrix} x(t) + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u(t) + \begin{pmatrix} \rho(t) \\ \rho(t) + 1 \end{pmatrix} d(t) \\ y(t) = \begin{pmatrix} 1 & 0 \end{pmatrix} x(t) \end{cases}$$

with a bounded parameter: $2 \le \rho(t) \le 4$ By using the polytopic transformation, $\rho(t) \in [2 \ 4]$, it becomes:

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{2} h_i(\rho(t))(A_i x(t) + B_i u(t) + E_i d(t)) \\ y(t) = \begin{pmatrix} 1 & 0 \end{pmatrix} x(t) \end{cases}$$

where the matrices are defined by:

$$A_1 = \begin{pmatrix} 0 & 4 \\ -3 & -3 \end{pmatrix}, \ A_2 = \begin{pmatrix} 0 & 2 \\ -1 & -3 \end{pmatrix}, \ B_1 = B_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ E_1 = \begin{pmatrix} 4 \\ 5 \end{pmatrix}, \ E_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

• • • • • • • • • • •

$$\dot{e} = \sum_{i=1}^{r} h_i(\rho) \left(N_i e + \left(PA_i - L_i C - N_i P \right) x + \left(PB_i - G_i \right) u - PE_i d \right) \\PE_i = \left(I + HC \right) E_i = 0 \Rightarrow E_i = -HCE_i, \quad i = 1, 2 \\N_i = PA_i - L_i C - N_i HC \\PB_i = G_i \\\Rightarrow \dot{e} = \sum_{i=1}^{r} h_i(\rho) N_i e$$

メロト メタト メヨト メヨ

$$\dot{e} = \sum_{i=1}^{r} h_i(\rho) \left(N_i e + \left(PA_i - L_i C - N_i P \right) x + \left(PB_i - G_i \right) u - PE_i d \right)$$

$$PE_i = (I + HC)E_i = 0 \Rightarrow E_i = -HCE_i, \quad i = 1, 2$$

$$N_i = PA_i - L_i C - N_i HC$$

$$PB_i = G_i$$

$$\Rightarrow \dot{e} = \sum_{i=1}^{r} h_i(\rho) N_i e$$

Focus on the decoupling condition: Find H such that $E_i = -HCE_i$, i=1,2

- $rang(E_i) = rang(CE_i)$ is not sufficient
- rang $([E_1 \ E_2]) = rang (C [E_1 \ E_2]) \Rightarrow E_i = -HCE_i$, is not satisfied
- The UIO does not exist
- The idea is to postpone the polytopic transformation at the end of the design and ensure
 E(ρ(t)) = -H(?)CE(ρ(t)) instead of E_i = -HCE_i

(Ichalal IEEE TIE'15, IFAC ICONS'16, / Marx AUTOMATICA'19)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

LPV UIO: Proposed solution

• LPV system affected by Unknown Inputs:

$$\begin{cases} \dot{x} = A(\rho)x + B(\rho)u + E(\rho)d\\ y = C(\rho)x \end{cases}$$

- Assumption : $ho\in\Omega_
 ho$ et $\dot
 ho\in\Omega_{\dot
 ho}$ known (measured) and bounded
- UIO:

$$\begin{cases} \dot{z} = N(\rho, \dot{\rho})z + G(\rho)u + L(\rho, \dot{\rho})y \\ \hat{x} = z - H(\rho)y \end{cases}$$

Decoupling condition rang(C(ρ)E(ρ)) = rang(E(ρ)), ∀ρ ∈ Ω_ρ

Extensions

- Relative degree $1 < r \le n$: Ichalal and Mammar IEEE TIE 2015
- Decay rate enhancement (stable but slow internal dynamics): Ichalal and Mammar IEEE TAC 2019 (Asymptotic Decoupling: lim_{t→+∞} (I_n + H(ρ, β)C(ρ)) = 0 instead of (I_n + H(ρ, β)C(ρ)) = 0.)
- Taking into account errors in the estimation of parameter time derivatives OR unavailable time derivatives IEEE CDC 2019 Ichalal and Guerra
- Parameters depending partially on unmeasured state variables IEEE CDC 2019 Ichalal and Guerra

D. Ichalal (IBISC)

• Consider the LPV system with parameter varying output matrix:

$$\begin{cases} \dot{x}(t) = \begin{pmatrix} 0 & \rho(t) \\ 1 - \rho(t) & -3 \end{pmatrix} x(t) + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u(t) \begin{pmatrix} \rho(t) \\ \rho(t) + 1 \end{pmatrix} d(t) \\ y(t) = \begin{pmatrix} \rho(t) & 0 \end{pmatrix} x(t) \end{cases}$$

where the parameter is bounded: $2 \le \rho(t) \le 4$.

- UI decoupling with constant a matrix H is not possible
 - ▶ The classical LPV UIO does not exist

イロト イヨト イヨト イヨ

• Consider the LPV system with parameter varying output matrix:

$$\begin{cases} \dot{x}(t) = \begin{pmatrix} 0 & \rho(t) \\ 1 - \rho(t) & -3 \end{pmatrix} x(t) + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u(t) \begin{pmatrix} \rho(t) \\ \rho(t) + 1 \end{pmatrix} d(t) \\ y(t) = \begin{pmatrix} \rho(t) & 0 \end{pmatrix} x(t) \end{cases}$$

where the parameter is bounded: $2 \le \rho(t) \le 4$.

• UI decoupling with constant a matrix H is not possible

The classical LPV UIO does not exist

 The condition rank (E(ρ)) = rank (C(ρ)E(ρ)) is satisfied rank (E(ρ)) = 1 et rank (C(ρ)E(ρ)) = rank (ρ²(t)) = 1
 avec H(ρ) = [-1/ρ(t) - 1/ρ(t)]^T The LPV UIO can be constructed

イロト イヨト イヨト イヨト

LPV UIO: Application to Motorcycle lateral dynamics

Figure: Experimental Platform

Figure: Experimentation site and longitudinal velocity (Dabladji (2015) and Damon (2018))

LPV UIO: Application to Motorcycle lateral dynamics

< □ > < 同 >

LPV UIO: Application to Motorcycle lateral dynamics

(a) Angle de roulis mesuré (bleu) et estimé (rouge) (b)

(b) Accélération latérale mesurée (bleu) et estimée (rouge)

• • • • • • • • • •

Figure: Validation

Asymptotic Decoupling Approach

- Problem Statement
- Unknown Input Observer: Asymptotic decoupling notion
- Simulation results: Discrete-time case
- Simulation results: Continuous-time case

2 Unknown Input Observer for LPV Systems

- Problem Statement
- LPV UIO: Proposed solution
- Simulation results

3 Conclusion and perspectives

< □ > < 同 > < 回 > < Ξ > < Ξ

- New LTV Unknown Input Observer for LTI systems
 - Asymptotic Decoupling Approach: convergence rate enhancement
 - LMI stability conditions for design
- UIO for LPV systems with smooth parameters
 - Postponing the polytopic transformation

< □ > < 同 > < 回 > < Ξ > < Ξ

Thank you for your attention Questions?

3

イロト イヨト イヨト イ