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Problem Statement

Consider the discrete-time LTI system:

xk+1 = Axk + Buk + Edk (1)

yk = Cxk (2)

with:
dk ∈ Rnd : Unknown Input vector
uk ∈ Rnu : Known Input vector
yk ∈ Rny : Measured output vector
xk ∈ Rn: Unmeasured state vector
A, B, E and C are known real matrices with appropriate dimensions

Objective

Estimate asymptotically the state x(t) from only the knowledge of uk and yk and the
model in the presence of unknwon inputs dk .
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Problem Statement

Consider the discrete-time LTI system:

xk+1 = Axk + Buk + Edk (3)

yk = Cxk (4)

Classical Unknown Input Observer

zk+1 = Nzk + Guk + Lyk (5)

x̂k = zk − Hyk (6)

Find the matrices N, G , L and H in order to:

1 decouple the state estimation error from dk

2 ensure ek → 0 when k → +∞
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Problem Statement

Consider the discrete-time LTI system:

xk+1 = Axk + Buk + Edk (7)

yk = Cxk (8)

Classical Unknown Input Observer

zk+1 = Nzk + Guk + Lyk (9)

x̂k = zk − Hyk (10)

The state estimation error dynamics is:

ek+1 = Nek + (PA− LC − N − NHC)︸ ︷︷ ︸
=0

xk + (PB − G)︸ ︷︷ ︸
=0

uk + PE︸︷︷︸
=0

dk

P = I + HC
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Problem Statement

Classical Unknown Input Observer

N = PA− LC − NHC
PB − G = 0
PE = 0
P = I + HC

Necessary and Sufficient existence conditions (Darouach et al 1994, IEEE TAC)

1 rank(CE) = rank(E)

2 All invariant zeros of the triplet (A,C ,E) are located inside the unit circle (Stable
invariant zeros)

Problem

1 If the internal dynamics are slow → the error dynamics is considerably affected
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Problem Statement

Consider the discrete-time LTI system:

xk+1 = Axk + Buk + Edk (11)

yk = Cxk (12)

Objective

How to estimate asymptotically the state xk and enhance the convergence rate in the
presence of stable but sable invariant zeros
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Unknown Input Observer: Asymptotic decoupling notion

Consider the discrete-time LTI system:

xk+1 = Axk + Buk + Edk (13)

yk = Cxk (14)

Asymptotic Decoupling notion

The condition (I + HC)E = 0 is replaced by (I + MkC)E → 0 when k → +∞

Assumptions

rank(CE) = rank(E)

The pair (A,C) is observable

dk is bounded

→ How to do it in order to preserve the observability at least in a short interval time?
→ Solution: Asymptotic decoupling

Ichalal and Mammar IEEE TAC 2020 (Continuous-time), IEEE Control Letters
2020, IEEE CDC 2019 (Discrete-Time)
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Unknown Input Observer: Asymptotic decoupling notion

The proposed LTV observer has the form:

zk+1 = Nkzk + Gkuk + Lkyk (15)

x̂k = zk −Mkyk (16)

The matrices Nk , Gk , Lk and Mk are time-dependent matrices which will be defined
later in order to ensure asymptotic convergence of the state estimation error
ek = xk − x̂k .

Choice of Hk

The matrix Hk is chosen in such a way that when k → +∞, it converges to M and
defined by

Mk = (1− f (k))H =
(

1− ραk
)
H (17)

f (k) is a time decreasing function which converges to zero (i.e. 0 < α < 1).
H is computed in the same way as in the classical UIO.
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Unknown Input Observer: Asymptotic decoupling notion

The state estimation error is defined by the equation

ek = xk − x̂k (18)

= (I + MkC)︸ ︷︷ ︸
Pk

xk − zk (19)

its dynamics obeys to the following difference equation

ek+1 = (Pk+1A− NkPk − LkC) xk + (Pk+1B − Gk) uk

+ Pk+1Edk + Nkek (20)

Under the conditions
1 Pk = I + MkC
2 Pk+1A− NkPk − LkC = 0
3 Pk+1B − Gk = 0

are satisfied ∀k, the state estimation error dynamics is reduced to

ek+1 = Nkek + Skdk (21)
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Unknown Input Observer: Asymptotic decoupling notion

State estimation error dynamics is:

ek+1 = Nkek + Skdk (22)

where:
Sk = Pk+1E
Nk = Pk+1A− KkC
Kk = Lk + NkMk

Pk+1 = I + HC − ρααkHC

lim
k→+∞

Sk = lim
k→+∞

(I + HC)E − ρααkHCE (23)

= lim
k→+∞

(−ρααkHCE) = 0 (24)
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Unknown Input Observer: Asymptotic decoupling notion

Error dynamics:
ek+1 = Nkek + Skdk (25)

Polytopic transformation:

ek+1 =
2∑

i=1

hi (k)((Ai − TiC)ek + Sidk) (26)

where
A1 = A + HCA− ραHCA, A2 = A + HCA (27)

S1 = −ραHCE , S2 = 0 (28)
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Unknown Input Observer: Asymptotic decoupling notion

Theorem

Given positive scalars µ and η such that 0 < η < 1
1+µ

. For τ1 = η (1 + µ) and τ2 = η, if

there exist symmetric and positive definite matrices X ∈ Rn×n and Gi ∈ Rn×n, gains
matrices T̄i ∈ Rn×ny , i = 1, 2 and a positive scalar γ such that the following LMIs hold (τ1 − 1)X AT

1 G
T
1 − CT T̄T

1 Γ1

G1A1 − T̄1C X − 2G1 0
ΓT

1 0 Ω1

 < 0 (29)

[
(τ2 − 1)X AT

2 G
T
2 − CT T̄T

2

G2A2 − T̄2C X − 2G2

]
< 0 (30)

Γ1 = (AT
1 G

T
1 − CT T̄T

1 )S1, Ω1 = 2ST
1 G1S1 − γST

1 S1 (31)

then the state estimation error converges asymptotically towards zero.
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Simulation results: Discrete-time case

A =

 0.5 −0.3847 0.7036
0 0.7 0.5468
0 0 −0.8

 ,E =

 0
0
2

 ,B =

 0
0
0


C =

[
−0.3518 −0.2734 0.5

]
The pair (A,C) is observable and the invariant zeros of the system are located at
z1 = 0.995 and z2 = 0.999.

H = −E(CE)−1 =
[

0 0 −2
]T

The function fk is defined by fk = 0.993k according to Definition ??. The parameter η
should be chosen such that

max
i=1,2

(|zi |) < 1− η < 1
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Simulation results: Discrete-time case
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Figure: Comparison of state estimations: Proposed LTV UIO and classical LTI UIO
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Simulation results
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Figure: Comparison of state estimation errors: Proposed LTV UIO and classical LTI UIO
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Simulation results
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Figure: Time evolution of the eigenvalues of the matrix Nk

D. Ichalal (IBISC) GT S3 2020 March 5th 2020 18 / 34



Simulation results: Continuous-time case

Consider the Linear model of a DC Motor described by:

ẋ = Ax + Ed , y = Cx

A =

 −R
L

0 − a
L

0 0 1
b
m

− k
m
− f

m

 ,E =

 − 1
L

0
0


and C =

[
1 0 0

]
.

The existence conditions of the classical design are satisfied and the invariant zeros are
−0.05± i9.999.
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Simulation results: Continuous-time case
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Figure: Real states (blue) and estimations (red)
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Simulation results: Continuous-time case
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Figure: State estimation error comparison
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Problem statement

LPV system affected by Unknown Inputs

ẋ = A(ρ)x + B(ρ)u + E(ρ)d , y = C(ρ)x

Classical approach

Polytopic transformation at the beginning

ẋ =
r∑

i=1

hi (ρ) (Aix + Biu + Eid), y = Cx

The UIO uses the same polytopic form:

ż =
r∑

i=1

hi (ρ) (Nix + Giu + Lid), x̂ = z − Hy

Existing solutions

Replacing Ei by E∗ solution to mini ‖E∗ − Ei‖F (Rodriguez and Theilliol 2005)

E(ρ)d = E1Ē(ρ)d = E1f (Alwi and Edwards 2014)

rank(C [E1...Er ]) = rank([E1...Er ]) (Marx and Ragot 2007, Chadli and Karimi 2013)
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Problem statement

LPV system affected by Unknown Inputs

ẋ = A(ρ)x + B(ρ)u + E(ρ)d , y = C(ρ)x

Classical approach

Polytopic transformation at the beginning

ẋ =
r∑

i=1

hi (ρ) (Aix + Biu + Eid), y = Cx

The UIO uses the same polytopic form:

ż =
r∑

i=1

hi (ρ) (Nix + Giu + Lid), x̂ = z − Hy

State estimation error dynamics e = x − x̂

ė =
r∑

i=1

hi (ρ)

Nie + (PAi − LiC − NiP)︸ ︷︷ ︸
=0

x + (PBi − Gi )︸ ︷︷ ︸
=0

u + PEi︸︷︷︸
=0

d
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LPV UIO: Motivating example

Consider the LPV system affected by the unknown input d :
ẋ(t) =

(
0 ρ(t)

1− ρ(t) −3

)
x(t) +

(
1

0

)
u(t) +

(
ρ(t)

ρ(t) + 1

)
d(t)

y(t) =
(

1 0
)
x(t)

with a bounded parameter: 2 ≤ ρ(t) ≤ 4

By using the polytopic transformation, ρ(t) ∈ [2 4], it becomes:{
ẋ(t) =

∑2
i=1 hi (ρ(t))(Aix(t) + Biu(t) + Eid(t))

y(t) =
(

1 0
)
x(t)

where the matrices are defined by:

A1 =

(
0 4
−3 −3

)
, A2 =

(
0 2
−1 −3

)
, B1 =B2 =

(
1
0

)
, E1 =

(
4
5

)
, E2 =

(
2
3

)

D. Ichalal (IBISC) GT S3 2020 March 5th 2020 24 / 34



LPV UIO: Motivating example

Consider the LPV system affected by the unknown input d :
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LPV UIO: Motivating example

ė =
r∑

i=1

hi (ρ) (Nie + (PAi − LiC − NiP) x + (PBi − Gi )u − PEid)

PEi = (I + HC)Ei = 0⇒ Ei = −HCEi , i = 1, 2

Ni = PAi − LiC − NiHC

PBi = Gi

⇒ ė =
r∑

i=1

hi (ρ)Nie

Focus on the decoupling condition: Find H such that Ei = −HCEi , i=1,2

rang(Ei ) = rang(CEi ) is not sufficient

rang ([E1 E2]) = rang (C [E1 E2])⇒ Ei = −HCEi , is not satisfied

The UIO does not exist

The idea is to postpone the polytopic transformation at the end of the design and
ensure
E(ρ(t)) = −H(?)CE(ρ(t)) instead of Ei = −HCEi

(Ichalal IEEE TIE’15, IFAC ICONS’16, / Marx AUTOMATICA’19)
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LPV UIO: Proposed solution

LPV system affected by Unknown Inputs:{
ẋ = A(ρ)x + B(ρ)u + E(ρ)d
y = C(ρ)x

Assumption : ρ ∈ Ωρ et ρ̇ ∈ Ωρ̇ known (measured) and bounded

UIO: {
ż = N(ρ, ρ̇)z + G(ρ)u + L(ρ, ρ̇)y
x̂ = z − H(ρ)y

Decoupling condition rang(C(ρ)E(ρ)) = rang(E(ρ)), ∀ρ ∈ Ωρ

Extensions

Relative degree 1 < r ≤ n : Ichalal and Mammar IEEE TIE 2015

Decay rate enhancement (stable but slow internal dynamics): Ichalal and Mammar
IEEE TAC 2019 (Asymptotic Decoupling: lim

t→+∞
(In + H(ρ, β)C(ρ)) = 0 instead of

(In + H(ρ, β)C(ρ)) = 0.)

Taking into account errors in the estimation of parameter time derivatives OR
unavailable time derivatives - IEEE CDC 2019 - Ichalal and Guerra

Parameters depending partially on unmeasured state variables - IEEE CDC 2019 -
Ichalal and Guerra
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LPV UIO: example

Consider the LPV system with parameter varying output matrix:
ẋ(t) =

(
0 ρ(t)

1− ρ(t) −3

)
x(t) +

(
1

0

)
u(t)

(
ρ(t)

ρ(t) + 1

)
d(t)

y(t) =
(
ρ(t) 0

)
x(t)

where the parameter is bounded: 2 ≤ ρ(t) ≤ 4.

UI decoupling with constant a matrix H is not possible

I The classical LPV UIO does not exist

The condition rank (E(ρ)) = rank (C(ρ)E(ρ)) is satisfied

rank (E(ρ)) = 1 et rank (C(ρ)E(ρ)) = rank
(
ρ2(t)

)
= 1

I avec H(ρ) =
[
− 1
ρ(t)
− 1+ρ(t)

ρ2(t)

]T
The LPV UIO can be constructed
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LPV UIO: Application to Motorcycle lateral dynamics

Figure: Experimental Platform
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LPV UIO: Application to Motorcycle lateral dynamics

Figure: Experimentation site and longitudinal velocity (Dabladji (2015) and Damon (2018))

D. Ichalal (IBISC) GT S3 2020 March 5th 2020 29 / 34



LPV UIO: Application to Motorcycle lateral dynamics

Figure: Estimated statesD. Ichalal (IBISC) GT S3 2020 March 5th 2020 30 / 34



LPV UIO: Application to Motorcycle lateral dynamics

Figure: Validation
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Conclusion and perspectives

New LTV Unknown Input Observer for LTI systems
Asymptotic Decoupling Approach: convergence rate enhancement
LMI stability conditions for design

UIO for LPV systems with smooth parameters
Postponing the polytopic transformation
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Thank you for your attention
Questions?
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