Development of an economic decision support model optimizing the maintenance strategy for transport systems

Rim LOUHICHI

PhD supervisors : Mohamed SALLAK – Jacques PELLETAN

Plan

- I. Project context and research issue
- II. State of art
- III. RUL-based maintenance optimization using risk assessment
 - 1. Assumptions
 - 2. Mathematical formulation
 - 3. Flowchart of the global approach
- IV. Reliability-centered maintenance optimization
 - 1. Assumptions
 - 2. Mathematical formulation
 - 3. Main differences with RUL-based maintenance
- V. Application on a case-study : mechanical bearing system
 - 1. System description and main characteristics
 - 2. Impact of variation of input (cost/time) parameters on optimization results
- VI. Conclusion and future perspectives

I. Project context and research issue

General context of MAPSYD poject (« Maintenance Prévisionnelle des Systèmes de transport en présence de données incomplètes ou incertaines ») *Thesis starting date :* 02nd Mai 2018

- Industrial partnership
 - Sector
 - Synox
- Academic partnership
 - \circ ANR
 - Heudiasyc-UTC
 - Institut LouisBachelier

Project context and research issue Ι.

II. State of art

Technical concepts

Maintenance	 combination of all technical, administrative and managerial actions during the life cycle of a system intended to retain it in, or restore it to, a state in which it can perform the required function (1).
Predictive maintenance	 maintenance carried out following a forecast derived from repeated analysis or known characteristics and evaluation of the significant parameters of the degradation of the system (1).
Corrective maintenance	 maintenance carried out after fault recognition and intended to restore a system into a state in which it can perform a required function (1).
Inspection	 examination for conformity by measuring, observing, or testing the relevant characteristics of a system (1).
Remaining Useful Life (RUL)	 the <i>RUL</i> of a system is defined as the expected lifetime between the current time and the end of life of the system (2).
Risk	 risk is defined as the product of the probability of occurrence of a hazardous event and the severity of that event (3) : Risk= probability of occurrence X severity of a hazardous event.

II. State of art

II. State of art

Risk analysis: identification, characterization, quantification and evaluation of loss from a failure event (3).

<u>Environmental risks</u>

1. Assumptions

- The system under study is a single component.
- The system under study is a part of a complex system with a known duration of exploitation, called **D**.
- The inspection is performed regularly on the system under study and it gives information on the health state of the system, i.e. the inspection gives a real estimation of the **RUL** of the system.
- The inspection does not alter the system's performance.
- An inspection is required at the beginning of the life of the system but the system's state of health does not imply a system replacement because the system is supposed to be new.
- Between inspection *i* and inspection *i+1*, one of these following scenarii may happen :
 - Predictive maintenance scenario: the RUL attains a threshold RUL_{lim} under which the system is considered to be deteriorated. The system is then replaced by a new one before the next inspection *i+1*.
 - Non-predictive maintenance scenario: the system is not predictively replaced in this scenario. In this case, the system may fall down or not :
 - The system falls down before the next inspection *i+1*.
 - The system continues to operate normally until the next inspection *i+1*.

- The cost of a predictive/corrective replacement and the cost of a single inspection are supposed to be constant and known.
- The duration of predictive/corrective replacement is supposed to be constant and known.
- The system's failure follows the Weibull distribution with :
 - *n* : scale parameter
 - **k** : shape parameter

2. Mathematical formulation

<u>Objective</u>: minimize the total cost $Cost_{total}$ including the cost of corrective maintenance C_c , the cost of predictive maintenance C_p , the cost of inspections C_i , the cost of operating loss C_{ol} and the cost of indirect loss C_{il} during the cycle D.

$$minimize(Cost_{total}) = minimize(C_c+C_p+C_{ol}+C_{il})$$

under the following constraints :

- The costs are positive : C_c , C_p , C_{ol} , C_i , $C_{il} \ge 0$
- The decision N_i to perform predictive maintenance between inspection i and i +1 is binary : N_i binary
- There is at most one predictive maintenance action to perform on the system under study : $\sum_{i=1}^{N_{in}-1} N_i \leq 1.$
- The total number of inspections N_{in} is integer and superior to $1 : N_{in}$ integer, $N_{in} \ge 1$.

2. Mathematical formulation

Cost of predictive maintenance	• $C_p = \sum_{i=1}^{N_{in}-1} c_p \cdot N_i$	c_p : cost of a predictive replacement (constant).
Cost of corrective maintenance	• $C_c = \sum_{i=1}^{N_{in}-1} c_c (1-N_i) \frac{\int_{t_i, T \ge t_i}^{t_{i+1}} f_i(t) dt}{R_i(t_i)}$	c_c : cost of a corrective replacement (constant). f_i : failure probability density between inspection i and i+1. R_i : reliability of the system at inspection i. t_i : time of inspection i.
Cost of inspection	• $C_i = N_{in}.c_i$	c _i : cost of a single inspection (constant).
Cost of operating loss	• $C_{ol} = \sum_{i=1}^{N_{in}-1} c_{dt} D_p N_i + \sum_{i=1}^{N_{in}-1} c_{dt} D_c (1-N_i) \frac{\int_{t_i, T \ge t_i}^{t_{i+1}} f_i(t) dt}{R_i(t_i)}$	<i>c_{dt}</i> : cost of the system down time per unit of time (constant).
Cost of indirect loss	• C _{il} = human risk + financial risk + environmental risk	

2. Mathematical formulation Human risks

• *Value of Statistical Life (VSL)*: terminology refering to the trade-off between fatality risks and money. It reflects

the worker's willingness to pay to accept risks and to pay for more safety.

• If *n* persons may probably be affected by the occurrence of a failure scenario with a probability of death equal to

 p_i^d for the j^{th} person, then the human risks can be evaluated as follows :

Human risks =
$$\sum_{j=1}^{n} VSL. p_d^j \cdot \sum_{i=1}^{N_{in}-1} \cdot (1-N_i) \frac{\int_{t_i, T \ge t_i}^{t_{i+1}} f_i(t). dt}{R_i(t_i)}$$

 \rightarrow By way of similarities, we may carry out the same study by considering different levels of injury.

2. Mathematical formulation

Financial risks

- Definition of the churn rate :
- The proportion of customers that a business loses during a given period of time.
- Assumptions :
- The business loses **x%** in case of predictive maintenance.
- The business loses **y%** in case of corrective maintenance.
 - Expression of financial risks : Financial risks = M.C. $\left(x\% \sum_{i=1}^{N_{in}-1} N_i + y\% \sum_{i=1}^{N_{in}-1} (1-N_i) \frac{\int_{t_i, T \ge t_i}^{t_{i+1}} f_i(t) dt}{R_i(t_i)}\right)$

Where :

- *M* : number of potential customers at the beginning of period *D*.
- **C**: cost of loss of one customer.

2. Mathematical formulation

Environmental risks

- Assumptions :
- A failure of the system may cause damages to environment by emission of harmful pollutants. We assume that :
 - the total number of chemicals that may be emitted is equal to *m*.
 - **P**_{*i*} is the probability of emission of chemical *j*.
 - **V**_{*i*} is the volume of emission of chemical *j*.
 - ρ_j is the density value of chemical *j*.
 - **D**_{ai} is the cost of damage per tonne emission of chemical **j**.

• Expression of environmental risks :
Environmental risks =
$$\left(\sum_{j=1}^{m} P_j \cdot V_j \cdot \rho_j \cdot D_{aj}\right) \cdot \left(\sum_{i=1}^{N_{in}-1} (1-N_i) \frac{\int_{t_i,T \ge t_i}^{t_{i+1}} f_i(t) \cdot dt}{R_i(t_i)}\right)$$

3. Flowchart of the global approach

IV. Reliability-centered maintenance

1. Assumptions

- The system undergoes relatively constant conditions of stress, environment and a single maintenance activity in life cycle [7].
- The condition of the system is monitored continuously. The monitoring is perfect and has no effect on system reliability [7].
- The system hazard rate is a known function of the condition. This implies that the hazard rate function ca be monitored and predicted continuously through condition-based maintenance [7].
- A predictive maintenance action has a perfect effect on the system : the maintenance restores the system to as good as new as we consider only replacement [7].
- If the system fails before the scheduled predictive maintenance time, an unscheduled (corrective) maintenance has to be performed on the system. The cost for unscheduled maintenance is higher than the cost for scheduled(predictive) maintenance [7].

IV. Reliability-centered maintenance

2. Mathematical formulation

- Predictive maintenance is performed whenever the reliability of the system reaches the reliability threshold **R**. This means that the system reliability at each predictive maintenance should be equal to **R**.
- Considering n_{in} the total number of inspection and h_i the failure hazard rate of the system between inspection i and i+1, the reliability R can be expressed as follow :

$$exp(\sum_{0}^{t_{nin-1}} - \int_{t_i}^{t_{i+1}} h_i(t).dt) = R$$

$$\sum_{0}^{t_{nin-1}} - \int_{t_i}^{t_{i+1}} h_i(t) dt = -lnR$$

IV. Reliability-centered maintenance

2. Mathematical formulation

• As the failure of the system follows the Weibull distribution, the hazard rate h_i can be expressed as follow :

$$h_i(t) = \frac{k_i}{\lambda_i} \cdot \left(\frac{t}{\lambda_i}\right)^{k_i - 1}$$

Where λ_i and k_i are respectively the scale and shape parameters of failure distribution between inspection *i* and *i*+1.

At the *n_{in}th* inspection, the probability of corrective maintenance is *–InR* and the probability of predictive maintenance is *1+InR*.

FC

• The expected total cost of maintenance **EC** at **n**_{in}th inspection :

$$EC = c_c(-lnR) + c_p(1 + lnR) + c_in_{in} + c_{dt}.D_c(-lnR) + c_{dt}.D_p(1 + lnR).$$

and the total cost rate c_{ER} during the cycle D:

$$c_{E\tau} = \frac{LC}{D}.$$

1. System description

• A rolling-element bearing, also known as a rolling bearing, is a bearing which carries a load by placing rolling elements (such as balls or rollers) between two bearing rings called races. The relative motion of the races causes the rolling elements to roll with very little rolling resistance and with little sliding.

1. System description

Characteristics of the system	Value	Dimension
Average lifetime of the global complex system D	25000	hours (h)
Cost of corrective replacement c_c	800	euros
Cost of predictive replacement c_p	200	euros
Cost of inspection c _i	150	euros
Cost of system down time for maintenance C_{dt}	1000	euros/h
Duration of a predictive replacement D_p	2	hours (h)
Duration of a corrective replacement D _c	10	hours (h)
Scale parameter of failure distribution $oldsymbol{\lambda}$	27000	/

2. Impact of variation of input parameters on optimization results

• Variation of cost parameters

	RUL	-based mai	intenance		Relia	ability-l	based main	tenance	ΔN_{in}	ΔC_{tot}
c_i	N_{in}	Ctot	RULinf	RULsup	Nin	c_{Er}	Ctot	R		
10	9	3994.56	4143.58	6675.40	9	0.15	3686.70	0.96	0	7.71%
20	9	4084.56	4143.58	6675.40	9	0.15	3776.70	0.96	0	7.54%
30	8	4168.40	4441.42	7326.17	8	0.15	3861.87	0.97	0	7.35%
40	8	4248.40	4441.42	7326.17	8	0.16	3941.87	0.97	0	7.22%
50	8	4328.40	4441.42	7326.17	8	0.16	4021.87	0.97	0	7.08%
60	7	4403.63	4827.33	8166.16	7	0.16	4096.11	0.98	0	6.98%
70	7	4473.63	4827,33	8166,16	7	0.17	4166.11	0.98	0	6.87%
80	7	4543.63	4827.33	8166.16	7	0.17	4236.11	0.98	0	6.77%
90	7	4613.63	4827.33	8166.16	7	0.17	4306.11	0.98	0	6.67%
100	7	4683.63	4827.33	8166.16	7	0,18	4376.11	0.98	0	6.57%
110	6	4748.71	5345.28	9287.76	6	0.18	4437.23	0.98	0	6.56%
120	6	4808.71	5345.28	9287.76	6	0.18	4497.23	0.98	0	6.48%
130	6	4868.71	5345.28	9287.76	6	0.18	4557.23	0.98	0	6.40%
140	6	4928.71	5345.28	9287.76	6	0.18	4617.23	0.98	0	6.32%
150	6	4988.71	5345.28	9287.76	6	0.19	4677.23	0.98	0	6.24%
160	6	5048.71	5345.28	9287.76	6	0.19	4737.23	0.98	0	6.17%
170	6	5108.71	5345.28	9287.76	6	0.19	4797.23	0.98	0	6.10%
180	6	5168.71	5345.28	9287.76	5	0.19	4856.98	0.99	1	6.03%
190	5	5225.30	6073,064935	10853.75	5	0.20	4906.98	0.99	0	6.09%
200	5	5275.30	6073.06	10853.75	5	0.20	4956.98	0.99	0	6.03%

Variation of c_i

2. Impact of variation of input parameters on optimization results

• Variation of cost parameters

Variation of c_p

	RUL	-based mai	intenance		Relia	bility-l	tenance	ΔN_{in}	ΔC_{tot}	
c _p	N_{in}	Ctot	RULinf	RUL _{sup}	N_{in}	c_{Er}	C_{tot}	R		
100	6	4888.71	5345.28	9287.76	6	0.18	4595.57	0.98	0	6%
200	6	4988.71	5345.28	9287.76	6	0.19	4677.23	0.98	0	6.24%
300	6	5088.71	5345.28	9287.76	6	0.19	4758.89	0.98	0	6.48%
400	6	5188.71	5345.28	9287.76	6	0.19	4840.55	0.98	0	6.71%
500	6	5288.71	5345.28	9287.76	6	0.20	4922.21	0.98	0	6.93%
600	6	5388.71	5345.28	9287.76	6	0.20	5003.87	0.98	0	7.14%
700	6	5488.71	5345.28	9287.76	6	0.20	5085.53	0.98	0	7.35%
800	6	5588.71	5345.28	9287.76	6	0.21	5167.19	0.98	0	7.54%
900	6	5688.71	5345.28	9287.76	6	0.21	5248.85	0.98	0	7.73%
1000	6	5788.71	5345.28	9287.76	6	0.21	5330.51	0.98	0	7.92%
1100	6	5888.71	8961.49	16916.07	6	0.22	5412.17	0.98	0	8.09%
1200	6	5988.71	8961.49	16916.07	6	0.22	5493.83	0.98	0	8.26%
1300	6	6088.71	8961.49	16916.07	6	0.22	5575.49	0.98	0	8.43%
1400	6	6188.71	24225.72	26052.64	6	0.23	5657.15	0.98	0	8.59%
1500	6	6288.71	24225.72	26052.64	6	0.23	5738.81	0.98	0	8.74%

2. Impact of variation of input parameters on optimization results

• Variation of cost parameters

RUL-based maintenance Reliability-based maintenance ΔN_{in} ΔC_{tot} Nin C_{tot} RUL_{inf} RULsup N_{in} C_{tot} \mathbf{R} c_{Er} C_C 1004866.29 5345.289287.76 0.18 4548.850.986.52%6 6 0 9287.76 4567.196.48%2004883.78 5345.280.180.986 6 0 9287.76 0.186.44% 30064901.27 5345.286 4585.530.980 6.40% 4006 4918.76 5345.289287.76 0.184603.87 0.980 6 5006 4936.255345.28 9287.76 0.184622.210.986.36%60 6006 4953.73 5345.289287.76 0.194640.550.986.32% 6 0 7006 4971.22 5345.289287.76 0.194658.890.986.28% 6 0 9287.76 0.196.24%800 6 4988.715345.286 4677.230.980 9287.76 6.20% 900 6 5006.20 5345.280.194695.570.986 0 6.17%6 5023.695345.289287.76 4713.910.9810006 0.190 9287.76 6.13%11006 5041.175345.2860.194732.250.980 12005058.66 5345.289287.76 0.194750.590.986.09% 6 6 0 13005076.155345.289287.76 0.194768.936.05%6 6 0.980 5093.649287.76 4787.27 0.986.01%140065345.286 0.190 5.98%150065111.135345.289287.76 6 0.194805.610.980

Variation of c_c

2. Impact of variation of input parameters on optimization results

• Variation of cost parameters

	RUL	-based mai	intenance		Relia	ability-l	tenance	ΔN_{in}	ΔC_{tot}	
c_{dt}	N_{in}	Ctot	RULinf	RULsup	Nin	CET	C_{tot}	R		
500	5	3064.51	6073.06	10853.75	5	0.12	2889.78	0.99	0	5.70%
600	5	3456.67	6073.06	10853.75	5	0.13	3253.22	0.99	0	5.89%
700	5	3848.83	6073.06	10853.75	5	0.14	3616.66	0.99	0	6.03%
800	6	4238.95	5345.28	9287.76	5	0.16	3980.10	0.99	1	6.11%
900	6	4613.83	5345.28	9287.76	6	0.17	4330.51	0.98	0	6.14%
1000	6	4988.71	5345.28	9287.76	6	0.19	4677.23	0.98	0	6.24%
1100	6	5363.59	5345.28	9287.76	6	0.20	5023.95	0.98	0	6.33%
1200	6	5738.47	5345.28	9287.76	6	0.21	5370.67	0.98	0	6.41%
1300	6	6113.35	5345.28	9287.76	6	0.23	5717.39	0.98	0	6.48%
1400	6	6488.23	4827.34	8166.16	6	0.24	6064.10	0.98	0	6.54%
1500	7	6859.39	4827.34	8166.16	6	0.26	6410.82	0.98	1	6.54%
1600	7	7224.54	4827.34	8166.16	7	0.27	6749.98	0.98	0	6.57%
1700	7	7589.69	4827.34	8166.16	7	0.28	7087.29	0.98	0	6.62%
1800	7	7954.84	4827.34	8166.16	7	0.30	7424.60	0.98	0	6.67%
1900	7	8320	4827.34	8166.16	7	0.31	7761.92	0.98	0	6.71%
2000	7	8685.15	4827.34	8166.16	7	0.32	8099.23	0.98	0	6.75%

Variation of c_{dt}

 \rightarrow The optimal number of inspections is similar for both methods for different values of cost parameters (c_i , c_p and c_{dt}).

 $\rightarrow \Delta C_{tot}$ is almost constant and close to 6%. This is due to the fact that in our approach we use a discrete model for predictive maintenance while in [7], we use a probability for predictive maintenance.

2. Impact of variation of input parameters on optimization results

• Variation of time parameters

Variation of D_p

	RUL	-based main	tenance		Reliability-based maintenance				ΔN_{in}	ΔC_{tot}
D_p	N_{in}	Ctot	RUL_{inf}	RUL _{sup}	Nin	c_{Er}	Ctol	R		
0.50	6	3488.71	5345.28	9287.76	6	0.14	3452.33	0.98	0	1.04%
1	6	3988.71	5345.28	9287.76	6	0.15	3860.63	0.98	0	3.21%
1.50	6	4488.71	5345.28	9287.76	6	0.17	4268.93	0.98	0	4.90%
2	6	4988.71	5345.28	9287.76	6	0.19	4677.23	0.98	0	6.24%
2.50	6	5488.71	6073.06	10853.75	6	0.20	5085.53	0.98	0	7.35%
3	6	5988.71	6073.06	10853.75	6	0.22	5493.83	0.98	0	8.26%
3.50	6	6488.71	6073.06	10853.75	5	0.24	5900.53	0.99	1	9.06%
4	6	6988.71	6073.06	10853.75	5	0.25	6298.38	0.99	1	9.88%
4.50	6	7488.71	6073.06	10853.75	5	0.27	6696.23	0.99	1	10.58%
5	6	7988.71	6073.06	10853.75	5	0.28	7094.08	0.99	1	11.20%
5.50	6	8488.71	6073.06	10853.75	5	0.30	7491.93	0.99	1	11.74%
6	6	8988.71	6073.06	10853.75	5	0.32	7889.78	0.99	1	12.23%
6.50	6	9488.71	6073.06	10853.75	5	0.33	8287.63	0.99	1	12.66%
7	6	9988.71	6073.06	10853.75	4	0.35	8669.17	0.99	2	13.21%
7.50	6	10488.71	6073.06	10853.75	4	0.36	9048.45	0.99	2	13.73%
8	1	10950			4	0.38	9427.73	0.99	-3	13.90%

2. Impact of variation of input parameters on optimization results

• Variation of time parameters

	RUL-based maintenance					ability-l	based main	ΔN_{in}	ΔC_{tot}	
D_e	Nin	C_{tot}	RULinf	RUL _{sup}	N_{in}	c_{Er}	C_{tot}	R		
1	1	1950			1	0.08	1950		0	0%
2	1	2950			2	0.11	2757.19	0.99	-1	6.54%
3	4	3644.53			3	0.13	3145.02	0.99	1	13.71%
4	4	3866.77	7161.83	13177.22	4	0.14	3427.73	0.99	0	11.35%
5	5	4064.51	6073.6	10853.75	4	0.15	3669.17	0.99	1	9.73%
6	5	4256.67	6073.6	10853.75	5	0.16	3889.78	0.99	0	8.62%
7	5	4448.83	6073.6	10853.75	5	0.16	4094.08	0.99	0	7.97%
8	5	4640.99	6073.06	10853.75	5	0.17	4298.38	0.99	0	7.38%
9	6	4813.83	5345.28	9287.76	6	0.18	4493.83	0.98	0	6.65%
10	6	4988.71	5345.28	9287.76	6	0.19	4677.23	0.98	0	6.24%

Variation of D_c

- → There is a slight difference in the results between both methods. The gap in results is more important as we get close to unrealistic configurations where D_p is close to D_c .
- → The impact of predictive maintenance cost and corrective maintenance cost on optimization results is seen through c_{dt} , D_p and D_c rather than c_c and c_p .

VI. Conclusion and future perspectives

- Maintenance cost-optimization based on *RUL*
- Application on a case-study : mechanical –bearing system
- Comparaison with reliability-centered maintenance by varying the input parameters and study their impact on optimization results

Scientific publications :

- (1) R. Louhichi, M. Sallak, and J. Pelletan. "A cost model for predictive maintenance based on risk-assessment." CIGI QUALITA, Canada, 2019.
- (2) R. Louhichi, M. Sallak, and J. Pelletan. "A maintenance cost optimization approach : application on a mechanical bearing system". International Journal of Mechanical Engineering and Robotics Research, 2020 (being published).
- (3) A study of the impact of predictive maintenance parameters on the improvement of system monitoring. **Cognition, Technology and Work** revue, 2020 (submitted paper).

VI. Conclusion and future perspectives

Bibliography

(1) AFNOR, NF-EN-13306-X-60-319 : Maintenance terminology. Norm, "Association Française de Normalisation", 2018.

(2) Si, X. S., Wang, W., Hu, C. H., & Zhou, D. H. (2011). Remaining useful life estimation - A review on the statistical data driven approaches. *European Journal of Operational Research*, 213(1), 1–14. https://doi.org/10.1016/j.ejor.2010.11.018

(3) KHAN, Faisal I., HADDARA, Mahmoud M. Risk-based maintenance (RBM): a quantitative approach for maintenance/inspection scheduling and planning. Journal of loss prevention in the process industries, 2003, vol. 16, no 6, p. 561-573.

(4) LESOBRE, Romain. Modélisation et optimisation de la maintenance et de la surveillance des systèmes multi-composants-Applications à la maintenance et à la conception de véhicules industriels. 2015. Thèse de doctorat. Université Grenoble Alpes.

(5) VAURIO, J. K. Availability and cost functions for periodically inspected preventively maintained units. Reliability Engineering & System Safety, 1999, vol. 63, no 2, p. 133-140.

(6) You, M. Y., Li, L., Meng, G., & Ni, J. (2010). Cost-effective updated sequential predictive maintenance policy for continuously monitored degrading systems. IEEE Transactions on Automation Science and Engineering, 7(2), 257–265. <u>https://doi.org/10.1109/TASE.2009.2019964</u>

(7) Zhou, Xiaojun, Lifeng Xi, and Jay Lee. (2007). "Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation." Reliability Engineering System Safety 92.4 : 530-534