

Robust Actuator Fault Diagnosis for LPV systems: Application to Quadrotor

Presented to: Journées Nationales Automatique de la SAGIP

> Prepared by: Eslam Abouselima

Under supervision of: Prof. Said Mammar Prof. Dalil Ichalal

Presentation outlines

Problem statement

Proposed solution

Solution synthesis

Proposed solution

Solution synthesis

Results

FTC importance for automated systemsWhy quadrotor?

FDD scheme

Proposed solution

Solution synthesis

Results

7

 $\begin{cases} \dot{x}(t) = A(\rho(t)) x(t) + B(\rho(t)) u(t) + F(\rho(t)) f(t) + E(\rho(t)) d(t) \\ y(t) = C(\rho(t)) x(t) + D(\rho(t)) u(t) \end{cases}$

where

LPV model:

$$M(\rho(t)) = \sum_{k=1}^{w} \mu_k(\rho(t)) M_k,$$

w:no.of vertices

Why LPV modeling?

u(*t*) =
$$-K(\rho(t)) \hat{x}(t) + V(\rho(t)) \eta(t)$$

Lyapunov inequality:

 $(A_k - B_k K_k)^T P + P(A_k - B_k K_k) + 2\zeta_c P \le 0$

Proposed solution

Robust H_{∞} control

Bounded real lemma:

$$\begin{pmatrix} (A_k - B_k K_k)^T P + P(A_k - B_k K_k) & P B_k & C_k^T \\ B_k^T P & -\gamma_c I & D_k^T \\ C_k & D_k & -I \end{pmatrix}$$

DC gain

Control law:

$$V_k = -(C_k (A_k - B_k K_k)^{-1} B_k)^{-1}$$

Proposed solution

Observer scheme:

$$\begin{cases} \dot{\hat{x}}(t) = A_{\rho} \, \hat{x}(t) + B_{\rho} \, u(t) + L_{\rho}(y(t) - \hat{y}(t)) \\ \hat{y}(t) = C_{\rho} \hat{x}(t) + D_{\rho} u(t) \\ r(t) = y(t) - \hat{y}(t) \end{cases}$$

The system:

$$\begin{aligned} \dot{x}(t) &= A_{\rho} x(t) + B_{\rho} u(t) + F_{\rho} f(t) + E_{\rho} d(t) \\ y(t) &= C_{\rho} x(t) + D_{\rho} u(t) + J_{\rho} f(t) + H_{\rho} d(t) \end{aligned}$$

Resulting error dynamics:

$$\begin{cases} \dot{e}(t) = (A_{\rho} - L_{\rho} C_{\rho})e(t) + (F_{\rho} - L_{\rho} J_{\rho})f(t) + (E_{\rho} - L_{\rho} H_{\rho})d(t) \\ r(t) = C_{\rho}e(t) + J_{\rho}f(t) + H_{\rho}d(t) \end{cases}$$

Université d'Évry - Paris Saclay

10

Proposed solution

The new approach

The system:

Differentiated output: $\tilde{y}(t)$

$$\dot{x}(t) = A_{\rho}x(t) + B_{\rho}u(t) + F_{\rho}f(t) + E_{\rho}d(t)$$

$$y(t) = C_{\rho}x(t) + D_{\rho}u(t)$$

$$\tilde{y}(t) = \frac{d}{dt}$$

$$y(t)$$

System classification according to the relative degree $\lambda_f > \lambda_d$ $\lambda_f < \lambda_d$ $\tilde{y}(t) = C_{\overline{\rho}} x(t) + B_{\overline{\rho}} u(t) + R_{\overline{\rho}} f(t) + D_{\overline{\rho}} \bar{d}(t)$ $\tilde{y}(t) = C_{\overline{\rho}} x(t) + B_{\overline{\rho}} u(t) + R_{\overline{\rho}} f(t)$ $\lambda_f = \lambda_d$ $\tilde{y}(t) = C_{\overline{\rho}} x(t) + B_{\overline{\rho}} u(t) + R_{\overline{\rho}} f(t) + D_{\overline{\rho}} d(t)$

$$\tilde{y}(t)$$
 $\frac{d}{dt}$ $y(t)$

Proposed solution

The new approach

The proposed residual generator:

$$\begin{cases} \dot{\hat{x}}(t) = A_{\rho}(t) \, \hat{x}(t) + B_{\rho} \, u(t) + L_{1\overline{\rho}} \big(y(t) - \hat{y}(t) \big) + L_{2\overline{\rho}} \big(\tilde{y}(t) - \hat{\tilde{y}}(t) \big) \\ \hat{y}(t) = C_{\rho} \hat{x}(t) \\ \hat{\tilde{y}}(t) = C_{\overline{\rho}} \, \hat{x}(t) + B_{\overline{\rho}} \, u(t) \\ r(t) = M_{\overline{\rho}} \big(\tilde{y}(t) - \hat{\tilde{y}}(t) \big) \end{cases}$$

Reference residual signal:

$$r_r(t) = Q f(t)$$

Virtual residual signal:

$$r_e(t) = r(t) - r_r(t)$$

Proposed solution

The new approach

Post bandpass filter

$$\begin{cases} \dot{x}_h(t) = A_h x_h(t) + B_h r_e(t) \\ r_f(t) = C_h x_h(t) + D_h r_e(t) \end{cases}$$

Proposed solution

Solution synthesis

Results

Solution synthesis

□ Applying for system of case 2 ($\lambda_f = \lambda_d$)

Error dynamics become $\dot{e}(t) = (A_{\rho} - L_{1\overline{\rho}}C_{\rho} - L_{2\overline{\rho}}C_{\overline{\rho}}) e(t) + (E_{\rho} - L_{2\overline{\rho}}D_{\overline{\rho}}) d(t) + (F_{\rho} - L_{2\overline{\rho}}R_{\overline{\rho}}) f(t)$ $r_{e}(t) = M_{\overline{\rho}} C_{\overline{\rho}} e(t) + M_{\overline{\rho}}D_{\overline{\rho}} d(t) + (M_{\overline{\rho}}R_{\overline{\rho}} - Q)f(t)$

Theorem (1): Exact residual convergence

 $r_r(t) = Q f(t) \rightarrow r_{e(t)} = 0$

Condition to satisfy: rank $\begin{pmatrix} \begin{bmatrix} C_{\overline{\rho}} & R_{\overline{\rho}} & D_{\overline{\rho}} \\ 0 & Q & 0 \end{bmatrix} = rank (\begin{bmatrix} C_{\overline{\rho}} & R_{\overline{\rho}} & D_{\overline{\rho}} \end{bmatrix})$ The gains $M_{\overline{\rho}} = \begin{pmatrix} 0 & Q & 0 \end{pmatrix} (C_{\overline{\rho}} & R_{\overline{\rho}} & D_{\overline{\rho}})^{-1}$, $L_{1\overline{\rho}}$, $L_{2\overline{\rho}}$ can be chosen freely

Solution synthesis

□ Applying for system of case 2 ($\lambda_f = \lambda_d$)

Error dynamics become

$$\dot{e}(t) = (A_{\rho} - L_{1\overline{\rho}}C_{\rho} - L_{2\overline{\rho}}C_{\overline{\rho}}) e(t) + (E_{\rho} - L_{2\overline{\rho}}D_{\overline{\rho}}) d(t) + (F_{\rho} - L_{2\overline{\rho}}R_{\overline{\rho}}) f(t)$$

 $r_e(t) = M_{\overline{\rho}} C_{\overline{\rho}} e(t) + M_{\overline{\rho}} D_{\overline{\rho}} d(t) + (M_{\overline{\rho}} R_{\overline{\rho}} - Q) f(t)$

Theorem (2): Asymptotic residual convergence

$$\begin{cases} \lim_{t \to \infty} r(t) = Q f, & d = 0 \\ \|r(t) - Q f(t)\|_{2} \le \gamma \|d(t)\|_{2}, & d \neq 0 \end{cases}$$

Condition to satisfy: $rank(R_{\overline{\rho}}) = n_{f}, \quad rank\left(\begin{bmatrix}F_{\rho}\\R_{\overline{\rho}}\end{bmatrix}\right) = rank(F_{\rho})$
The gains $M_{\overline{\rho}} = QR_{\overline{\rho}}^{-1}, \ L_{2\overline{\rho}} = F_{\rho} R_{\overline{\rho}}^{-1}, \ L_{1\overline{\rho}}$ is chosen to minimize disturbance effect.

Solution synthesis

□ Applying for system of case 2 ($\lambda_f = \lambda_d$)

Error dynamics become $\dot{e}(t) = (A_{\rho} - L_{1\overline{\rho}}C_{\rho} - L_{2\overline{\rho}}C_{\overline{\rho}}) e(t) + (E_{\rho} - L_{2\overline{\rho}}D_{\overline{\rho}}) d(t) + (F_{\rho} - L_{2\overline{\rho}}R_{\overline{\rho}}) f(t)$ $r_{e}(t) = M_{\overline{\rho}}C_{\overline{\rho}} e(t) + M_{\overline{\rho}}D_{\overline{\rho}} d(t) + (M_{\overline{\rho}}R_{\overline{\rho}} - Q)f(t)$

Worst case H_{-}/H_{∞} technique

The gains $M_{\overline{\rho}}$, $L_{2\overline{\rho}}$, $L_{1\overline{\rho}}$ *are chosen to minimize disturbance effect and maximize fault effect such that:*

 $\left| \left| T_{rd} \right| \right|_{\infty} \le \gamma$ $\left| \left| T_{rf} \right| \right|_{\infty} \ge \beta$

Proposed solution

Solution synthesis

Results

\Box Reference tracking using H_{∞} control

□ Residual generator in fault free case

\Box New approach vs H_{-}/H_{∞} technique

□ Battery level estimation

Post bandpass filter importance

Proposed solution

Solution synthesis

Results

□ LPV modeling gives more realistic and dynamic system model.

□ Robustness of the controller is very essential feature.

 \Box The H_{-}/H_{∞} observer is enhanced greatly using the auxiliary output.

□ Some structural properties of the system may simplify fault estimation.

□ A post bandpass filter can improve the obtained residual signal.

□ Fault compensation in case of partial loss of actuators efficiency.

□ Controller reconfiguration in case of one or more actuators failure.

□ Applying the developed algorithms in real time on a drone.

THANK YOU

Questions?