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Talk Objective & Outline

nObjectives: 
lReview some of control aspects of cyber-security issues and 

discuss secure state estimation in the bounded-error 
framework 

nOutline 
lCyber-physical and network controlled systems 
lModels of cyber-attacks and mitigation strategies 
lSecure state estimation in the bounded-error framework
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nCyber-Physical and  
Network Controlled Systems
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Cyber-Physical Systems
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Network Control Systems 
Safety-critical systems, pHRI, …  
Operation in adversarial environment,  
requires correct-by-construction 
synthesis 
Guarantee certificates 
- Safety 
- Security  
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Cyber-Physical Systems  

nNetworked controlled systems  
are prone to cyber-attacks. 

lUnder cyber-attacks, corrupted measurement data leads to 
corrupted control commands
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State Feedback Control
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Output Feedback Control
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u = K( ̂x, xD) xd

̂x

Network

noise

Network
sensor attack

Plant

Observer

Controller

y

actuator attack

u
ω

y = Cx
·x = Ax + Bu + ωdisturbance



nModels of Cyber-Attacks and  
Mitigation Strategies
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Resilient control systems

n « Deploying proven IT security technologies into a 
control system is not an appropriate solution to mitigate 
the impact of cyber-attacks »  

l[Kuipers & Fabro, 2006] 
lRetard, DoS …  

nNeed to develop secure control components for 
CPS, and secure navigation solutions for robotics 
systems 

l[Ding, et al., Neurocomputing 2018], [Lun, et al., J. Syst. 
Soft. 2019], [Debaji, et al., Annual Reviews in Control, 2019], 
…
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Cyber-attacks

nDisclosure attacks => Confidentiality breach 
lIntrusions (eavesdropping, …) ;. 

nDeception attacks =>  Integrity breach 
lCorruption of signals: spoofing attack, false-data or bias injection …  
lDeceptive-bias-injection attacks can remain undetected, or stealthy 

(similar to noise, or exploit zero-dynamics pathways).  
lStealthy attacks may be characterized => robot trajectory planners or CPS 

controllers may be modified to design control inputs that allow the detection 
of any attack, with guarantee certificates [Bianchin, el al., IEEE CSL 2020] 

nDisruption attacks => Availability breach 
lIntrusion where signal is blocked or delayed, (denial of service attack, 

..) 
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Models of cyber-attacks

nSensor attacks 
lDenial of Service (DoS) attack 

lReplay attack 
lDeception attack 

lStealthy attack: produce plausible output signals.  
l change in output smaller than impact of noise/disturbance
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Mitigation strategies I

nMitigation of cyber-attacks 
lFDI FTC methods and algorithms are good candidates 

l[Debaji, et al., Annual Reviews in Control, 2019] …  

lCyber-attacks <> ‘Random’ faults
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Mitigation strategies I

nDetection of cyber-attacks 
lWatermarking-like method to improve detectability of actuator 

attacks on sUAV 
lUnknown input observer 
lVariable frequency pulse-width modulated signals,  

to improve the resilience of the actuator  
l(Muniraj & Farhood, CEP, 2019)

13

Physical system 
u y + y

uwatermark



Mitigation strategies I
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Mitigation strategies I

nDetection of cyber-attacks
lClassification of measurement data in real-time localisation 

systems (RTLS)  
(Gerrero-Higueras et al., RAS, 2018.) 
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Detection of cyber-attacks 
 in real-time localisation systems

(Gerrero-Higueras et al., Robot. Autonom. Syst. 2018.)  
nIndoor navigation systems via Multilateration 

lUses distance to beacons (anchors) with known position. 
lProne to DoS and spoofing cyber-attacks on beacons.  

nDetection using only data received ?  
lSupervised learning: Training with ground truth  

data, with and without cyber-attacks. 
lMachine learning techniques for classification 

lTest of several classifiers 
lPositive evaluation via thorough analysis of KPI 

(accuracy, precision, recall) from actual data. 
lMixed conclusions … 
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Mitigation strategies II

n Control using encrypted data 
lPaillier encryption (semi-homomorphic encryption scheme). 

Control computation with encrypted data. 
   
They provides strong privacy and security guarantees for 
the closed-loop system at the cost of extra computations 
(Farokhi, et al., CEP, 2017). 
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Mitigation strategies III

nPassive resilience via secure state estimation 
lDirectly estimate the state from the corrupted 

measurements, and/or altered actuation 
  
(Lu & Yang, Automatica 2018), (Xie & Yang, IJRNC 2018),  
(Shoukry & Tabuada, IEEE TAC 2016),  
(Shoukry, et al., ACM TCPS 2018, IEEE TAC 2018) …. 
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Secure State Estimation

nWorking scenario: 
lSystem with n sensors, 
lup to s sensors potentially under cyber-attack,  
lbut attacked sensors are not known. 

nSecure Estimation:  
lReconstruct whole state vector from n sensors under  

s-sparse (sensor/actuator) attack vector 
lSystem is then s-sparse observable
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·x = Ax + Bu + ω
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Secure State Estimation

nTheorem (Chong, et al., ACC 2015)  
(Shoukry & Tabuada, IEEE TAC 2016) 
 
System is s-sparse observable, if and only if 
(i)  n > 2s, and  
(ii) system is observable for any subset of n - s sensors.
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Secure State Estimation

nBrute force algorithms are combinatorial: 

lWork with bank of                      observers  
 
using all possible subsets of s out of n sensors ! 

n Effective solution technique for MMSE 
lSMC: Satisfiability modulo convex programming as a 

new framework (Shoukry, et al., Proc. IEEE, 2018)
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nSecure state estimation in the 
bounded-error framework
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State Estimation

nState estimation the bounded-error framework 

lSet membership predictor-corrector algorithms 
lCan handle corrupted data as outliers.  

lInterval observers 
lHave been extended to handle cyber-attacks. 
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nSet membership estimation with sampled data 
n (Schweppe, 68) (Bertsekas & Rhodes, 71) (Kurzhanski & Vályi, 96), 

(Kieffer, et al., 02) (Jaulin, 02) (Raïssi et al., 04, 05) (Meslem, et al, 10),  
(Milanese & Novara, 11), (Kieffer & Walter, 11), (Combastel, 15) … 

n Reachability + Set inversion + Forward backward consistency

23
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n Predictor-corrector algorithms in 
presence of corrupted data
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Estimation with outliers.  
q-Relaxed intersection (Jaulin,09)
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nInfrastructure-Based Localisation Techniques  
with Interval Data, and Outliers
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Robust Localization

nExample #1.  
Robot localisation via ToF-based Multilateration 

l Can measure the distance to a beacon 
l ToF. Time of Flight 
l Bounded-error framework 
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Robust Localization
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Robust Localization
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Robust Localization
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Robust Localization
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Robust Localization
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Robust Localization
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Robust Localization

nExample #2.  
Robot localisation via TDoA Multilateration 

l Can measure the distance difference to beacons 
l TDoA. Time Difference of Arrival 
l Bounded-error framework 
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Robust Localization
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Robust Localization
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Robust Localization
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n Secure Interval Observers
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nContinuous-time data 
n Luenberger-like observers: (Gouzé et al, 00),(Mazenc & Bernard, 10), 

(Meslem & Ramdani, 11), (Raïssi, et al., 12) … 

n Tune observer gain to ensure 
Input-to-State Stability  
(practical stability)  

n Build framers         and        
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Interval Observers
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Secure Interval Observer

(Degue, et al., IEEE CDC 2018) 
nResilience to stealthy attacks 

lStealthy attacks produce plausible output signals 
lsensor: change in output smaller than impact of noise/disturbance 
lactuator: change in output has no dynamic …  

nObserver synthesis 
lPlays with initial conditions 
lBounds of attacks = virtual outputs
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Secure Interval Observer

(Degue, et al., IEEE CDC 2018) 
nResilience to stealthy attacks 
nWorking assumptions for observer synthesis 

lContinuous-time measurement 
lStrong assumptions on inversibility 
lStrong assumptions    

nBuild a secure interval observer that successfully 
reconstructs bounds on sensor/actuator attack 
vector

40

∃L, A − LC is Hurwitz and Metzler



Secure Interval Observer
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Stealthy Sensor Attack Stealthy Actuator Attack

resilient

(Degue, et al., IEEE CDC 2018)

non-resilient



n Secure Interval Impulsive Observers
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Secure Interval Observer

 Our approach (Rabehi, et al, SYSTOL 2019) 
nResilience to deception attacks 
nWorking assumptions 

lDiscrete-time measurements with continuous-time model.  
lSystem s-sparse observable 
lSensor attacks are distinguishable  

nBuild a secure interval impulsive observer that 
successfully reconstructs state vector
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Secure Interval Observer

 Our approach (Rabehi, et al, SYSTOL 2019) 
nInterval Impulsive Observer, as a hybrid system
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x(t+
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Interval Impulsive Observer
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Interval Impulsive Observer
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Interval Impulsive Observer
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Interval Impulsive Observer
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Open-loop predictor

Impulsive correction when measurement is available

t ∈ [tk−1, tk], ·x(t) = AM x(t) − ANx(t) + Bu(t)

x(t+
k ) = (I + LC)+x(tk) − (I + LC)−x(tk) − |L |ϵ(tk) − Ly(tk)

A = AM − AN, AM is Metzler, AN > 0

·x(t) = AMx(t) − AN x(t) + Bu(t)

x(t+
k ) = (I + LC)+x(tk) − (I + LC)−x(tk) − |L |ϵ(tk) − Ly(tk)

(Rabehi, et al, SYSTOL 2019)



Secure Interval Observer

 Our approach (Rabehi, et al, SYSTOL 2019) 
nInterval Impulsive Observer, as a hybrid system 

nGain synthesis ensuring Input-to-state stability. 
nNLMI relaxed to set of LMI. 
nCan readily be extended to sporadic  
or event-triggered controlled sampling.
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Secure Interval Observer

 Our approach (Rabehi, et al, SYSTOL 2019) 
nResilience to deception attacks 
nSelection strategy at each time step  

lUse                   observers on every subset of n - s sensors 

lCompute                  intersections of n - s estimated sets 

lThere should be at least one non-empty solution set. 
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Academic example. Deception attack
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Robot Navigation. n=3 GPS sensors. s=1 deception attack.  



Secure Interval Observer

 Our approach (Rabehi, et al, SYSTOL 2019)
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n Future work
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Concluding remarks

nSystem and control theories can help developing 
secure (and privacy-preserving) CPS   

nAddress secure estimation with stealthy attacks 
nPlan to improve scalability of secure estimation 
nPlan to further applications in mobile robotics
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The Cyber-Security Market

nGrowing Market 
lGlobal revenue of the cybersecurity market reached USD 106 

billions in 2019, (+11% yearly increase) 
lThe global healthcare cybersecurity market was valued at USD 

8 billions in 2018 and is expected to reach USD 27 billion by 
2026, at a CAGR of 17% 

nEmployability  
lCybersecurity if the most constrained sector 

lJob postings increased 100% since 2013.  

nImpact of COVID-19.  
lincreased amount of remote work … 
lexpectation from robot fleet deployment … 

lRobots are allies during pandemics. 
54



n Thank you ! 
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