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1. INTRODUCTION
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Adaptive Degrees of Freedom χ2-statistic (ADFC) method :

+ Passive approach,

+ Adaptive threshold technique,

+ Based on Optimal Upper Bound Interval Kalman Filter used as
residual generator

Optimal Upper Bound Interval Kalman Filter (OUBIKF)
[Lu et al., 2019] :

+ a Standard Kalman Filter (SKF) - based method,

+ Linear Discrete-time System,

+ Mixed uncertainty : stochastic or bounded uncertainties in
system parameters

+ Interval analysis.
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2. PRELIMINARY
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Preliminary (1/3)

Positive semi-definite matrix : M � 0

M is called an upper bound of N , denoted by N � M :

N � M ⇐⇒ M − N � 0

Ω : non empty set of real square matrices.
K is an upper bound of Ω, denoted Ω � K :

Ω � K ⇐⇒ M � K , ∀M ∈ Ω.
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Preliminary (2/3)

real interval matrix : [X ] = ([xij ]) , i = 1 : p , j = 1 : q,

X = (xij) ∈ [X ] ⇐⇒ xij ∈ [xij ], ∀i = 1 : p, ∀j = 1 : q,

sup([X ]) M= (sup([xij ])) ≡ X , inf([X ]) M= (inf([xij ])) ≡ X ,

mid([X ]) M= (X + X )/2, rad([X ]) M= (X − X )/2,

width([X ]) M= X − X ,

S+([X ]) M=
{
X ∈ [X ] : X = XT and X � 0

}
,

BS+([X ]) M=
{
K : K = KT , K � 0, S+([X ]) � K

}
: the set

of symmetric positive semi-definite upper bounds of S+([X ]).

Arithmetic operators (+,−,×,÷) and all other notions are
used as defined in [Jaulin et al., 2001].
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Preliminary (3/3)
OUBIKF : based on the following two theorems introduced in
[Lu et al., 2019]

Assumptions : [M] = ([mij ]) : symmetric and S+([M]) 6= ∅.
Theorem 1 [Existence of Optimal upper bound] :

α∗
M= supM∈S+([M]) {λmax(M)} <∞,

α∗I is the optimal upper bound of S+([M]) in the set
BS+([M]) in the sense of operator norm minimization,

α∗ is called the optimal value of BS+([M]).

Theorem 2 [Bounds of Optimal value α∗] :
Define Max = (Maxij) as :

Maxij =
{
mij , if mid([mij ]) ≥ 0
mij , otherwise

then : α∗ ≤ ‖Max‖F .
In addition, if Max � 0 then : λmax(Max) ≤ α∗ ≤ ‖Max‖F .
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3. MAIN RESULTS
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Formulation
System under consideration :{

xk = Akxk−1 + Bkuk + wk

yk = Ckxk + Dkuk + vk + f s
k

, k ∈ N∗,

Assumptions (H)
wk ∼ N (0,Qk), vk ∼ N (0,Rk), x0 ∼ N (0,P0),

For Fk ∈ {Ak ,Bk ,Ck ,Dk ,Qk ,Rk}, Fk : unknown, deterministic
and belonging to known [F ] resp. ,

x0, {w1 : wk} and {v1 : vk} : mutually independent.

f s
k ∈ Rny : sensor fault vector.
+ multiple faults : some (or all) sensors are faulty,
+ single fault : only one sensor is faulty.

A sensor fault ←→ one component of f s
k .

f s
k = 0 : fault free case.
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Principle of the method (1/2)

+ Compute [rk ] using OUBIKF as a residual generator

+ Find Σk : S+([Sk ]) � Σk , Σk = ak I (ak ∈ R∗+), where Sk :
covariance of rk , Sk ∈ [Sk ].

+ Use Uk = sup(abs([rk ]T Σ−1
k [rk ])) = sup(abs([rk ]T [rk ]/ak)) as

the statistic for hypothesis testing.

Uk ≈ χ2(κkny ) where κk =
∑ny

i=1 width([rk,i ])/ny : adaptive
amplifier coefficient (a.c.c.)

abs([a , b]) M=
{

[min(|a|, |b|) ,max(|a|, |b|)] , 0 /∈ [a , b]
[0 ,max(|a|, |b|)] , 0 ∈ [a , b].
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Principle of the method (2/2)

+ adaptive threshold δk determined by
P(χ2(κkny ) > δk) = α with a chosen significance level α.

+ Fault detection test :

(H0) : Uk ≤ δk , no error occurred,

(H1) : Uk > δk , an error occurred.

+ Adjustment procedure :
In a window of size w :

#{consecutive error occurrences} ≤ w −→ dismissed.

all detection signals will be shifted to the left bw/2c steps (b.c
is the floor function).
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Evaluation indicators

N iterations

faults occur in a region R ⊂ {1 : N} with length l
(0 ≤ l ≤ N)

R : a range or union of ranges (called hereafter an error range
for simplicity).

Define :

+ Detection Rate : DR =
∑

k∈R I(πk = 1)
l × 100%,

+ No Detection Rate : NDR = 100%− DR,

+ False Alarm Rate : FAR =
∑

k 6∈R I(πk = 1)
N − l × 100%,

+ Efficiency : EFF = DR− FAR.
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4. APPLICATION
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Bicycle vehicle model
a nonlinear continuous-time model, discretized/linearized
(more details can be found in [Fergani, 2014])[

β̇(t)
ψ̈(t)

]
=

[ −Cf−Cr
mv 1 + µ−lr Cr−lf Cf

mv2

−lr Cr−lf Cf
Iz

−l2
f Cf−l2

r Cr
Iz v

] [
β(t)
ψ̇(t)

]

+
[ Cf

mv 0 0 0
lf Cf
Iz

1
Iz

Sr Rtr
2Iz −Sr Rtr

2Iz

] 
δ

Mdz
Tbrl
Tbrr


.

(1)
state variable : the sideslip angle β(k) and the vehicle yaw
ψ(k)
sampling time T = 0.05s −→ Ad ,Bd ,Cd ,Dd : point
matrices
simulate interval matrix [F ] for F ∈ {Ad ,Bd ,Cd ,Dd} with
radius chosen at random in [0, 0.5]
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General settings

f s
k = b.1, ∀k ∈ R with length l = 50,
Process L = 100 times of simulations for each
b ∈ {0 : 5 : 30} :

+ Scenario 1. {xk , yk}k=1:N : fixed, R : random.

+ Scenario 2. R : fixed, {xk , yk}k=1:N : resimulated.

−→ Indicators are computed for each of L simulation
times and their means are yielded afterward.

Comparison with the method proposed in
[Raka and Combastel, 2013] (called method B in the next).
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Simulation results (1/5)

Scenario 1 : considers the method performance in term of fault
values b and the positions at which errors occur (in R) w.r.t. a
given measurement sample {yk}k∈1:N .

Table 1. Fault detection for scenario 1 without the
adjustment procedure

b τ DR% NDR% FAR% EFF%
0 0 1.26 98.74 1.03 0.23
5 13.8 5.34 94.66 1.04 4.30
10 27.5 21.12 78.88 1.04 20.08
15 41.3 67.28 32.72 1.17 66.11
20 55.0 94.94 5.06 1.26 93.68
25 68.8 98.64 1.36 1.36 97.28
30 82.5 99.84 0.16 1.42 98.42
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Simulation results (2/5)

Scenario 1 :

Table 2. Fault detection for scenario 1 with the adjustment
procedure

b τ DR% NDR% FAR% EFF%
0 0 0 100 0 0
5 13.8 3.30 96.70 0.01 3.29
10 27.5 17.70 82.30 0.02 17.68
15 41.3 63.54 36.46 0.05 63.49
20 55.0 96.36 3.64 0.06 96.30
25 68.8 99.96 0.04 0.15 99.81
30 82.5 100 0 0.38 99.62
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Simulation results (3/5)
Scenario 2 : show the effects of different measurement samples
{yk}s , k = 1 : N, s = 1 : L, on the fault detection procedure for a
given error range R. These effects come from random noises
existing inside of yk .

Table 3. Fault detection for scenario 2 without the
adjustment procedure

b τ DR% NDR% FAR% EFF%
0 0 3.34 96.66 1.90 1.44
5 13.8 3.08 96.92 2.36 0.72
10 27.5 19.24 80.76 2.41 16.83
15 41.3 82.48 17.52 2.18 80.30
20 55.0 94.74 5.26 2.48 92.26
25 68.8 98.66 1.34 2.28 96.38
30 82.5 99.88 0.12 2.37 97.51
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Simulation results (4/5)

Scenario 2 :

Table 4. Fault detection for scenario 2 with the adjustment
procedure

b τ DR% NDR% FAR% EFF%
0 0 2.8 97.20 1.44 1.36
5 13.8 2.16 97.84 1.84 0.32
10 27.5 14.06 85.94 1.97 12.09
15 41.3 82.42 17.58 1.62 80.80
20 55.0 96.96 3.04 1.82 95.14
25 68.8 99.8 0.20 1.71 98.10
30 82.5 100 0 1.89 98.11
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Simulation results (5/5)

Comparison with method B
The method B consists in :

applying interval observer for linear continuous time system
with additive and multiplicative disturbances

computing adaptively upper bounds (ubt) and lower bounds
(lbt) of residuals rt ,

fault detection rule : a fault is detected if 0 /∈ [lbt , ubt ].

Table 5. Method B of [Raka and Combastel, 2013] versus
the Proposed FD scheme for b = 20.

DR% NDR% FAR% EFF%
Method B 8.14 91.86 5.64 2.50

Proposed method 98 2 0.12 97.88
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5. CONCLUSION
AND

PERSPECTIVE
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1 A new scheme for fault detection combining :
OUBIKF
adaptive degrees of freedom χ2-statistics hypothesis test
method.

2 simulations results highlight the potential of this approach.
3 the modified EFF index : EFF = c1.DR− c2.FAR,

c1, c2 ∈ [0, 1] :
−→ control the importance of the two indexes DR and FAR .

4 potential perspective :
investigating the possibility of adjusting the a.a.c. κk according
to different purposes of fault detection.

extending to other types of fault, e.g. actuator fault.

−→ the great flexibility of this method by adjusting tuning factors
makes it suitable to multiple applications.
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