A new scheme for fault detection based on Optimal Upper Bound Interval Kalman Filter

Quoc Hung Lu - Soheib Fergani - Carine Jauberthie

LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.

April 08, 2022

SAGIP - Gdr MACS - GT S3

19th IFAC Symposium on System Identification (SYSID) July 13-16, 2021, (Virtual) Padova, Italy

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- INTRODUCTION
- PRELIMINARY
- MAIN RESULT
- APPLICATION
- **O CONCLUSION AND PERSPECTIVE**

1. INTRODUCTION

<ロト < 回 > < 言 > < 言 > ミ の < C 3/24 • Adaptive Degrees of Freedom χ^2 -statistic (ADFC) method :

- + Passive approach,
- + Adaptive threshold technique,
- + Based on *Optimal Upper Bound Interval Kalman Filter* used as residual generator
- Optimal Upper Bound Interval Kalman Filter (OUBIKF) [Lu et al., 2019] :
 - + a Standard Kalman Filter (SKF) based method,
 - + Linear Discrete-time System,
 - + Mixed uncertainty : stochastic or bounded uncertainties in system parameters
 - + Interval analysis.

2. PRELIMINARY

<ロト < 回 > < 言 > < 言 > ミ の < C 5/24

- Positive semi-definite matrix : $M \succeq 0$
- *M* is called an *upper bound* of *N* , denoted by $N \leq M$:

 $N \preceq M \iff M - N \succeq 0$

• Ω : non empty set of real square matrices. *K* is an *upper bound* of Ω , denoted $\Omega \leq K$:

 $\Omega \preceq K \qquad \Longleftrightarrow \qquad M \preceq K, \ \forall M \in \Omega.$

Preliminary (2/3)

• real interval matrix : $[X] = ([x_{ij}])$, i = 1 : p, j = 1 : q,

•
$$X = (x_{ij}) \in [X] \iff x_{ij} \in [x_{ij}], \forall i = 1 : p, \forall j = 1 : q,$$

- $\sup([X]) \stackrel{\vartriangle}{=} (\sup([x_{ij}])) \equiv \overline{X}, \inf([X]) \stackrel{\vartriangle}{=} (\inf([x_{ij}])) \equiv \underline{X},$
- $\operatorname{mid}([X]) \stackrel{\scriptscriptstyle \Delta}{=} (\overline{X} + \underline{X})/2, \operatorname{rad}([X]) \stackrel{\scriptscriptstyle \Delta}{=} (\overline{X} \underline{X})/2,$
- width([X]) $\stackrel{\scriptscriptstyle riangle}{=} \overline{X} \underline{X}$,
- $S_+([X]) \triangleq \{X \in [X] : X = X^T \text{ and } X \succeq 0\},$
- BS₊([X]) ≜ {K : K = K^T, K ≥ 0, S₊([X]) ≤ K} : the set of symmetric positive semi-definite upper bounds of S₊([X]).
- Arithmetic operators (+, −, ×, ÷) and all other notions are used as defined in [Jaulin et al., 2001].

Preliminary (3/3)

 $\ensuremath{\textbf{OUBIKF}}$: based on the following two theorems introduced in [Lu et al., 2019]

- Assumptions : $[M] = ([m_{ij}])$: symmetric and $S_+([M]) \neq \emptyset$.
- Theorem 1 [Existence of Optimal upper bound] :

•
$$\alpha_* \stackrel{\scriptscriptstyle{\Delta}}{=} \sup_{M \in S_+([M])} \left\{ \lambda_{\max}(M) \right\} < \infty$$
,

- α_{*}*I* is the optimal upper bound of S₊([M]) in the set BS₊([M]) in the sense of operator norm minimization,
- α_* is called the **optimal value** of $BS_+([M])$.
- Theorem 2 [Bounds of Optimal value α_{*}] : Define Max = (Max_{ij}) as :

$$\mathit{Max}_{ij} = egin{cases} \overline{m}_{ij} &, ext{ if mid}([m_{ij}]) \geq 0 \ \underline{m}_{ij} &, ext{ otherwise} \end{cases}$$

then : $\alpha_* \leq ||Max||_F$.

In addition, if $Max \succeq 0$ then :

 $\lambda_{\max}(Max) \leq lpha_* \leq \|Max\|_F.$

3. MAIN RESULTS

<ロト < 回 > < 言 > < 言 > ミ の < C 9/24

Formulation

• System under consideration :

$$\begin{cases} x_k = A_k x_{k-1} + B_k u_k + w_k \\ y_k = C_k x_k + D_k u_k + v_k + \frac{f_k^s}{k} \end{cases}, \quad k \in \mathbb{N}^*, \end{cases}$$

- Assumptions (H)
 - $w_k \sim \mathcal{N}(0, Q_k)$, $v_k \sim \mathcal{N}(0, R_k)$, $x_0 \sim \mathcal{N}(0, P_0)$,
 - For $F_k \in \{A_k, B_k, C_k, D_k, Q_k, R_k\}$, F_k : unknown, deterministic and belonging to known [F] resp.,
 - x_0 , $\{w_1 : w_k\}$ and $\{v_1 : v_k\}$: mutually independent.
- $f_k^s \in \mathbb{R}^{n_y}$: sensor fault vector.
 - + multiple faults : some (or all) sensors are faulty,
 - $+ \,$ single fault : only one sensor is faulty.

A sensor fault \longleftrightarrow one component of f_k^s .

$$f_k^s = 0$$
 : fault free case.

(ロ)、(回)、(E)、(E)、(E)、(O)(O)

Principle of the method (1/2)

- + Compute $[r_k]$ using OUBIKF as a residual generator
- + Find $\Sigma_k : S_+([S_k]) \preceq \Sigma_k$, $\Sigma_k = a_k I$ ($a_k \in \mathbb{R}^{*+}$), where $S_k :$ covariance of r_k , $S_k \in [S_k]$.
- + Use $U_k = \sup(\operatorname{abs}([r_k]^T \Sigma_k^{-1}[r_k])) = \sup(\operatorname{abs}([r_k]^T [r_k]/a_k))$ as the statistic for hypothesis testing.

 $U_k \approx \chi^2(\kappa_k n_y)$ where $\kappa_k = \sum_{i=1}^{n_y} \text{width}([r_{k,i}])/n_y$: adaptive amplifier coefficient (a.c.c.)

$$\mathsf{abs}([a\,,b]) \triangleq egin{cases} \{\mathsf{[min}(|a|,|b|)\,,\mathsf{max}(|a|,|b|)] &, \ 0 \notin [a\,,b] \ [0\,,\mathsf{max}(|a|,|b|)] &, \ 0 \in [a\,,b]. \end{cases}$$

Principle of the method (2/2)

- + adaptive threshold δ_k determined by $\mathbb{P}(\chi^2(\kappa_k n_y) > \delta_k) = \alpha$ with a chosen significance level α .
- + Fault detection test :
 - (H_0) : $U_k \leq \delta_k$, no error occurred,
 - (H_1) : $U_k > \delta_k$, an error occurred.
- + Adjustment procedure :
 - In a window of size w :

#{consecutive error occurrences} $\leq w \longrightarrow$ dismissed.

 all detection signals will be shifted to the left [w/2] steps ([.] is the floor function).

- N iterations
- faults occur in a region *R* ⊂ {1 : *N*} with length *l* (0 ≤ *l* ≤ *N*)
- \mathcal{R} : a range or union of ranges (called hereafter an *error range* for simplicity).

Define :

- + Detection Rate : $\mathsf{DR} = \frac{\sum_{k \in \mathcal{R}} \mathbb{I}(\pi_k = 1)}{I} \times 100\%$,
- + No Detection Rate : NDR = 100% DR,

$$+$$
 False Alarm Rate : FAR $=rac{\sum_{k
ot\in \mathcal{R}}\mathbb{I}(\pi_k=1)}{N-I} imes 100\%,$

+ *Efficiency* : EFF = DR - FAR.

4. APPLICATION

Bicycle vehicle model

• a nonlinear continuous-time model, discretized/linearized (more details can be found in [Fergani, 2014])

$$\begin{bmatrix} \dot{\beta}(t) \\ \ddot{\psi}(t) \end{bmatrix} = \begin{bmatrix} \frac{-C_{f}-C_{r}}{mv} & 1+\mu\frac{-l_{r}C_{r}-l_{f}C_{f}}{mv^{2}} \\ \frac{-l_{r}C_{r}-l_{f}C_{f}}{l_{z}} & \frac{-l_{f}^{2}C_{f}-l_{r}^{2}C_{r}}{l_{z}v} \end{bmatrix} \begin{bmatrix} \beta(t) \\ \dot{\psi}(t) \end{bmatrix} \\ + \begin{bmatrix} \frac{C_{f}}{mv} & 0 & 0 & 0 \\ \frac{l_{f}C_{f}}{l_{z}} & \frac{1}{l_{z}} & \frac{S_{r}Rt_{r}}{2l_{z}} & -\frac{S_{r}Rt_{r}}{2l_{z}} \end{bmatrix} \begin{bmatrix} \delta \\ M_{dz} \\ T_{b_{rl}} \\ T_{b_{rr}} \end{bmatrix}$$
(1)

- state variable : the sideslip angle $\beta(k)$ and the vehicle yaw $\psi(k)$
- sampling time $T = 0.05s \longrightarrow A_d, B_d, C_d, D_d$: point matrices
- simulate interval matrix [F] for $F \in \{A_d, B_d, C_d, D_d\}$ with radius chosen at random in [0, 0.5]

- $f_k^s = b.1$, $\forall k \in \mathcal{R}$ with length l = 50,
- Process L = 100 times of simulations for each b ∈ {0 : 5 : 30} :
 - + Scenario 1. $\{x_k, y_k\}_{k=1:N}$: fixed, \mathcal{R} : random.
 - + Scenario 2. \mathcal{R} : fixed, $\{x_k, y_k\}_{k=1:N}$: resimulated.

 \longrightarrow Indicators are computed for each of L simulation times and their means are yielded afterward.

• Comparison with the method proposed in [Raka and Combastel, 2013] (called method B in the next).

Simulation results (1/5)

Scenario 1: considers the method performance in term of fault values *b* and the positions at which errors occur (in \mathcal{R}) w.r.t. a given measurement sample $\{y_k\}_{k \in 1:N}$.

Table 1. Fault detection for scenario 1 without theadjustment procedure

b	τ	DR%	NDR%	FAR%	EFF%
0	0	1.26	98.74	1.03	0.23
5	13.8	5.34	94.66	1.04	4.30
10	27.5	21.12	78.88	1.04	20.08
15	41.3	67.28	32.72	1.17	66.11
20	55.0	94.94	5.06	1.26	93.68
25	68.8	98.64	1.36	1.36	97.28
30	82.5	99.84	0.16	1.42	98.42

Scenario 1 :

Table 2. Fault detection for scenario 1 with the adjustmentprocedure

b	τ	DR%	NDR%	FAR%	EFF%
0	0	0	100	0	0
5	13.8	3.30	96.70	0.01	3.29
10	27.5	17.70	82.30	0.02	17.68
15	41.3	63.54	36.46	0.05	63.49
20	55.0	96.36	3.64	0.06	96.30
25	68.8	99.96	0.04	0.15	99.81
30	82.5	100	0	0.38	99.62

Simulation results (3/5)

Scenario 2: show the effects of different measurement samples $\{y_k\}_s$, k = 1 : N, s = 1 : L, on the fault detection procedure for a given error range \mathcal{R} . These effects come from random noises existing inside of y_k .

Table 3. Fault detection for scenario 2 without theadjustment procedure

b	τ	DR%	NDR%	FAR%	EFF%
0	0	3.34	96.66	1.90	1.44
5	13.8	3.08	96.92	2.36	0.72
10	27.5	19.24	80.76	2.41	16.83
15	41.3	82.48	17.52	2.18	80.30
20	55.0	94.74	5.26	2.48	92.26
25	68.8	98.66	1.34	2.28	96.38
30	82.5	99.88	0.12	2.37	97.51

Scenario 2 :

Table 4. Fault detection for scenario 2 with the adjustmentprocedure

b	τ	DR%	NDR%	FAR%	EFF%
0	0	2.8	97.20	1.44	1.36
5	13.8	2.16	97.84	1.84	0.32
10	27.5	14.06	85.94	1.97	12.09
15	41.3	82.42	17.58	1.62	80.80
20	55.0	96.96	3.04	1.82	95.14
25	68.8	99.8	0.20	1.71	98.10
30	82.5	100	0	1.89	98.11

Simulation results (5/5)

Comparison with method B

The method B consists in :

- applying interval observer for linear continuous time system with additive and multiplicative disturbances
- computing adaptively upper bounds (ub_t) and lower bounds (lb_t) of residuals r_t,
- fault detection rule : a fault is detected if $0 \notin [lb_t, ub_t]$.

Table 5. Method B of [Raka and Combastel, 2013] versus the Proposed FD scheme for b = 20.

	DR%	NDR%	FAR%	EFF%
Method B	8.14	91.86	5.64	2.50
Proposed method	98	2	0.12	97.88

5. CONCLUSION AND PERSPECTIVE

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q @ 22/24

- **1** A new scheme for fault detection combining :
 - OUBIKF
 - adaptive degrees of freedom χ^2 -statistics hypothesis test method.
- **a** simulations results highlight the potential of this approach.
- the modified EFF index : $EFF = c_1.DR c_2.FAR$, $c_1, c_2 \in [0, 1]$:

 \longrightarrow control the importance of the two indexes DR and FAR .

- optential perspective :
 - investigating the possibility of adjusting the a.a.c. κ_k according to different purposes of fault detection.
 - extending to other types of fault, e.g. actuator fault.

 \longrightarrow the great flexibility of this method by adjusting tuning factors makes it suitable to multiple applications.

Fergani, S. (2014).

Robust multivariable control for vehicle dynamics. PhD thesis, Grenoble INP, GIPSA-lab, Control System dpt., Grenoble, France.

Jaulin, L., Kieffer, M., Didrit, O., and Walter, E. (2001). Applied Interval Analysis, with Examples in Parameter and State Estimation. Robust Control and Robotics. Springer-Verlag, London.

- Lu, Q. H., Fergani, S., Jauberthie, C., and Le Gall, F. (2019). Optimally bounded interval kalman filter. In 2019 IEEE 58th Conference on Decision and Control (CDC), pages 379–384.
- Raka, S.-A. and Combastel, C. (2013). Fault detection based on robust adaptive thresholds : A dynamic interval approach.

Annual Reviews in Control, 37(1):119–128.

THANKS FOR YOUR ATTENTION

AND

Q & A!

・ロ ・ < 部 ・ < 言 ・ < 言 ・ こ ・ の へ ()
24/24