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1. INTRODUCTION



o Adaptive Degrees of Freedom y?-statistic (ADFC) method :

+ Passive approach,
-+ Adaptive threshold technique,

+ Based on Optimal Upper Bound Interval Kalman Filter used as
residual generator

e Optimal Upper Bound Interval Kalman Filter (OUBIKF)
[Lu et al., 2019] :
+ a Standard Kalman Filter (SKF) - based method,
+ Linear Discrete-time System,

+ Mixed uncertainty : stochastic or bounded uncertainties in
system parameters

+ Interval analysis.
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2. PRELIMINARY



Preliminary (1/3)

@ Positive semi-definite matrix : M = 0

@ M is called an upper bound of N , denoted by N < M :
N<M — M—-N>0

@  : non empty set of real square matrices.
K is an upper bound of Q, denoted 2 < K :

Q<K <— M=K, YM e Q.
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Preliminary (2/3)

o real interval matrix : [X] = ([x;]), i=1:p,j=1:q,
o X =(xj) € [X] <= xj€[x], Vi=1:p, Vi=1:q,
o sup([X]) = (sup([x;])) = X, inf([X]) = (inf([x;])) = X,
o mid([X]) = (X + X)/2, rad([X]) = (X - X)/2,

o width([X]) £ X — X,

o S(IX]) £ {XeX]: X=XTand X =0},

o BS ([X]) {K K=KT, K=0, S.([X]) = K} : the set

of symmetric positive semi-definite upper bounds of S, ([X]).

@ Arithmetic operators (4, —, X, ) and all other notions are
used as defined in [Jaulin et al., 2001].
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Preliminary (3/3)

OUBIKEF : based on the following two theorems introduced in
[Lu et al., 2019]

e Assumptions : [M] = ([mj]) : symmetric and S;([M]) # 0.
e Theorem 1 [Existence of Optimal upper bound] :
e é SUPM65+([M]) {Amax(M)} < 00,

o «,l is the optimal upper bound of S, ([M]) in the set
BS,([M]) in the sense of operator norm minimization,

o a, is called the optimal value of BS,([M]).

@ Theorem 2 [Bounds of Optimal value o] :
Define Max = (Max;;) as :

Max; — my o, if mid([m,-j]) >0
mj; , otherwise
then : a, < |[Max||g.

In addition, if Max = 0 then :  A\nax(Max) < ., < [[Max||F.
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3. MAIN RESULTS



Formulation

@ System under consideration :

= AiXj— B
{Xk kXk—1 + Druk + wy  keN

Vi = Ciexie + Drug + v + fks

e Assumptions (H)
@ Wi ~ N(O, Qk), Vi ~ N(O, Rk), Xo ~ N(O, Po),

o For Fyx € {Ax, Bk, Ck, Dk, Qk, Rk}, Fk : unknown, deterministic
and belonging to known [F] resp. ,

o xo, {w1 : wx} and {v; : v} : mutually independent.

e f2 € R™ : sensor fault vector.

+ multiple faults : some (or all) sensors are faulty,
+ single fault : only one sensor is faulty.

A sensor fault <— one component of f2.

© = 0 : fault free case.
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Principle of the method (1/2)

+ Compute [rx] using OUBIKF as a residual generator

+ Find Xk : S ([Sk]) = Xk, Tk = akl (ax € R*T), where Sy :
covariance of r, Sx € [Sk].

+ Use Uy = sup(abs([re] "= [rk])) = sup(abs([rx] " [rx]/ax)) as
the statistic for hypothesis testing.
Uk ~ x%(kkny) where ky = > width([ry ;])/n, : adaptive
amplifier coefficient (a.c.c.)

[min([al, |b]) , max({al, |6])] , 0 ¢ [a,b]

qua7m)::{m,WmXUﬂdbD] 7OE[a,b].
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Principle of the method (2/2)

+ adaptive threshold §, determined by
P(x?(kkny) > 6x) = a with a chosen significance level a.

+ Fault detection test :

o (Ho) : Uk < dy, no error occurred,

o (Hy1) : Uk > by, an error occurred.

+ Adjustment procedure :
e In a window of size w :

#{consecutive error occurrences} < w —  dismissed.

o all detection signals will be shifted to the left |w/2] steps (|.]
is the floor function).
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Evaluation indicators

@ N iterations

e faults occur in a region R C {1: N} with length /
(0<I<N)

@ R : arange or union of ranges (called hereafter an error range
for simplicity).

Define :
D keR [(mp = 1)
/

+ No Detection Rate : NDR = 100% — DR,

ZkgRH(Wk =1)
N—1

+ Detection Rate : DR = x 100%,

+ False Alarm Rate : FAR = x 100%,

+ Efficiency : EFF = DR — FAR.
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4. APPLICATION



Bicycle vehicle model

@ a nonlinear continuous-time model, discretized/linearized
(more details can be found in [Fergani, 2014])

N i IS
Y(t) | et — Y(t)
5
[ &% o0 0 0 M,
+ /TCVf 1 SRt S, Rt ] dz
lz E r2/zr 72If Tbr/
Th,

@ state variable : the sideslip angle 5(k) and the vehicle yaw
(k)

@ sampling time T = 0.05s — Ay, By, C4, Dy : point
matrices

e simulate interval matrix [F] for F € {A4, B4, C4, Dg} with
radius chosen at random in [0, 0.5]
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General settings

e f7 =b.1, Vk € R with length | = 50,

@ Process L = 100 times of simulations for each
be{0:5:30}:

+ Scenario 1. {xx, yx}k=1:n : fixed, R : random.
+ Scenario 2. R : fixed, {xk, yk }k=1.n : resimulated.

— Indicators are computed for each of L simulation
times and their means are yielded afterward.

@ Comparison with the method proposed in
[Raka and Combastel, 2013] (called method B in the next).
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Simulation results (1/5)

Scenario 1 : considers the method performance in term of fault
values b and the positions at which errors occur (in R) w.r.t. a
given measurement sample {yx }ke1:n-

Table 1. Fault detection for scenario 1 without the
adjustment procedure

T DR% | NDR% | FAR% | EFF%
0 1.26 | 98.74 1.03 0.23
13.8 | 5.34 | 94.66 1.04 4.30
275 | 21.12 | 78.88 1.04 | 20.08
41.3 | 67.28 | 32.72 1.17 | 66.11
20 | 55.0 | 94.94 | 5.06 1.26 | 93.68
25 | 68.8 | 98.64 | 1.36 1.36 | 97.28
30 | 825|99.84 | 0.16 1.42 | 98.42

e
S5 o olo
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Simulation results (2/5)

Scenario 1 :

Table 2. Fault detection for scenario 1 with the adjustment
procedure

7 | DR% | NDR% | FAR% | EFF%
0 0 100 0 0

13.8 | 3.30 | 96.70 0.01 3.29
275 | 17.70 | 82.30 0.02 | 17.68
41.3 | 63.54 | 36.46 0.05 | 63.49
20 | 55.0 | 96.36 | 3.64 0.06 | 96.30
25 |1 68.8 | 99.96 | 0.04 0.15 | 99.81
30 | 82.5 | 100 0 0.38 | 99.62

I
oS o olo
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Simulation results (3/5)

Scenario 2 : show the effects of different measurement samples
{yk}s, k=1:N,s=1:L, on the fault detection procedure for a
given error range R. These effects come from random noises

existing inside of yj.

Table 3. Fault detection for scenario 2 without the
adjustment procedure

b T DR% | NDR% | FAR% | EFF%
0 0 3.34 | 96.66 1.90 1.44
5 1138 | 3.08 | 96.92 2.36 0.72
10 | 27.5 | 19.24 | 80.76 241 | 16.83
15| 41.3 | 82.48 | 17.52 2.18 | 80.30
20 | 55.0 | 94.74 | 5.26 248 | 92.26
25 | 68.8 | 98.66 | 1.34 2.28 | 96.38
30 18259988 | 0.12 237 | 9751
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Simulation results (4/5)

Scenario 2 :

Table 4. Fault detection for scenario 2 with the adjustment
procedure

T DR% | NDR% | FAR% | EFF%
0 2.8 97.20 1.44 1.36
13.8 | 216 | 97.84 1.84 0.32
27.5 | 14.06 | 85.94 1.97 | 12.09
41.3 | 8242 | 17.58 1.62 | 80.80
20 | 55.0 | 96.96 | 3.04 1.82 | 95.14
25 | 68.8 | 99.8 0.20 1.71 | 98.10
30 | 82.5 | 100 0 1.89 | 98.11

I
oS o olo
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Simulation results (5/5)

Comparison with method B

The method B consists in :
@ applying interval observer for linear continuous time system
with additive and multiplicative disturbances

e computing adaptively upper bounds (ub;) and lower bounds
(Ib;) of residuals ry,

o fault detection rule : a fault is detected if 0 ¢ [Ib;, ube].

Table 5. Method B of [Raka and Combastel, 2013] versus
the Proposed FD scheme for b = 20.

DR% | NDR% | FAR% | EFF%
Method B 8.14 | 91.86 5.64 2.50
Proposed method | 98 2 0.12 | 97.88
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5. CONCLUSION

AND
PERSPECTIVE



@ A new scheme for fault detection combining :

o OUBIKF
o adaptive degrees of freedom y?-statistics hypothesis test
method.

@ simulations results highlight the potential of this approach.
© the modified EFF index : EFF = ¢;.DR — ¢.FAR,
C1,C € [0, 1] :
— control the importance of the two indexes DR and FAR .
@ potential perspective :
e investigating the possibility of adjusting the a.a.c. xy according

to different purposes of fault detection.

e extending to other types of fault, e.g. actuator fault.

— the great flexibility of this method by adjusting tuning factors
makes it suitable to multiple applications.
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