Data Dimensionality Reduction Strategy for Fault Diagnosis in PV Panels Using Machine Learning Algorithms

> CHOKR Bassel – 1st year PhD Student Supervised By : N.Chatti – A.Charki – T.Lemenand LARIS Laboratory – Université d'Angers

France

Outline

- 1. State of the Art
- 2. Dataset
- 3. DDRS
- 4. Evaluation
- 5. Results
- 6. Conclusion

State of the Art

PHM : Prognostic and Health Monitoring

Both approaches are aiming on improving the availability of the studied systems (in this work it will be on PV systems)

Data Driven : Machine Learning

Supervised

Labeled Data

- Classification and Regression Applications
- SVM
- Decision Tree
- Logistic Regression
- Bayesian Network

Unsupervised

<u>Unlabeled Data</u>

- Clustering and Association
- K-mean clustering
- KNN

Data Driven : Machine Learning

Supervised

Labeled Data

• Classification and Regression Applications

Evaluation

Results

Conclusion

- SVM
- Decision Tree
- Logistic Regression
- Bayesian Network

DDRS

Dataset

Unsupervised

<u>Unlabeled Data</u>

- Clustering and Association
- K-mean clustering
- KNN

State of

the art

GPVS Open-source

- Dataset was created experimentally in a lab and referenced by Azzdine et al [1]
- Data is divided to 8 modes , 1 for normal operating mode and 7 others each representing a fault
- Each mode is monitored for an average of 15 seconds and the data is recorded, with a sampling rate of 1000 samples/second

[1] B. Azzeddine, B. Wahiba, G. Amar, and M. Saad, "Real-time fault detection in PV systems under MPPT using PMU and high-frequency multi-sensor data through online PCA-KDE-based multivariate KL divergence," *International Journal of Electrical Power & Energy Systems*, vol. 125, p. 106457, Feb. 2021

GPVS Dataset

Label	Case	Number of acquired samples	Description		
FO	Normal Operating Mode	61006	No Fault injected		
F1	Inverter fault	59006	Complete failure in one of the six IGBTs		
F2	Feedback current sensor fault	64007	One phase sensor fault with 20% error.		
F3	Grid anomaly	2961	Intermittent voltage sags		
F4	PV array mismatch	79008	10 to 20% nonhomogeneous partial shading		
F5	PV array mismatch	79007	15% open circuit in PV array		
F6	MPPT/IPPT controller fault	39004	-20% gain parameter of PI controller in MPPT/ IPPT controller of the boost converter		
F7	Boost converter controller fault	54006	+20% in time constant parameter of PI controller in MPPT/IPPT controller of the boost converter		

Labeling the data

- Faults are induced during an unspecified time within operation
- Time of fault was approximated based on Azzedine et al work
- All data after fault induction are labeled as faulty by the name of the file

Grid Connected PV System (GPVS)

Conclusion

Results

State of the art

Dataset DDRS

Evaluation

lpv	Vpv	Vdc	ia	ib	ic	va	vb	VC	labc	If	Vabc	Vf	Label
2.214691	90.59448	147.0703	0.65039	-0.57739	-0.13343	-146.51	119.0256	26.43941	0.714643	49.99293	155.0793	50.00809	FO
2.176849	90.21606	147.0703	0.636962	-0.47668	-0.20728	-147.028	115.9155	29.6258	0.714386	50.0024	155.0849	50.00797	FO
2.266724	90.49072	147.0703	0.657104	-0.55725	-0.16028	-149.764	112.4077	33.98148	0.714386	50.0024	155.0849	50.00797	FO
2.348083	90.28931	147.6563	0.643676	-0.44983	-0.25428	-150.825	110.1656	39.10461	0.714386	50.0024	155.0849	50.00797	FO
2.315918	89.9231	147.0703	0.670531	-0.52368	-0.19385	-151.958	105.5728	43.45225	0.714232	50.01188	155.0898	50.00786	FO
2.212799	90.22217	147.3633	0.65039	-0.42297	-0.30127	-153.043	103.0173	48.50306	0.714232	50.01188	155.0898	50.00786	FO

Data Scaling

Data was normalized using z – score :

$$Z = \frac{x_i - \mu}{\sigma}$$

The new values will scale in a range of μ = 0 and σ = 1

Data Splitting

- Data is split based on 70/30 training/testing ratio
- For training/validation k-fold cross validation method with k
 = 5 is used

Problem Statement

- Based on interest on working on feature engineering
- Information gain and PCA are used
- Information gain is calculated using standard deviation as a threshold to select features subset
- A strategy (DDRS) is proposed to find the optimal threshold for feature selection using information gain
- Classifiers are evaluated based on DDRS threshold

Evaluation

Results

Conclusion

State of

the art

Dataset DDRS

Data Dimensionality Reduction Strategy (DDRS)

Information Gain

- A filtering feature selection method aiming to determine the significance of a certain feature used for classification
- Based on Shannon entropy equation :

$$E(y) = -\sum_{i}^{C} p_i \log_2 p_i$$

• Information gain =

Entropy of parent node – weighted entropy of child nodes

Information Gain

17

Principal component analysis (PCA)

- A feature extraction method aiming to transform the set of features into a new one based on principal components(PCs).
- Principal components are eigen vectors representing the original data
- PCs represent the original dataset in an increasing accumulative variance; thus, the more principal components selected the more variance (information) is represented
- The first component represents the highest variance, the second PC the second highest, and so on
- The possible number of components to be formed is equal to the total number of original features
- The explained variance value of each PC is calculated as following :

$$EV = \frac{eigen \ value \ of \ PC \ (eigen \ vector)}{total \ of \ eigen \ values}$$

Conclusion

Results

Dataset

the art

Evaluation

Classifiers

(Mierswa, 2017)

- Datapoint is labeled based on the majority vote of its nearest neighbors
- Euclidean distance is one of the ways to calculate the
 distance between the questioned datapoint and its
 neighbors
- Hyperparameters : number of neighbors K distance
 (Euclidean cosine distance)

(Deepankar, 2021)

- A decision tree is created from root notes, internal and leaf nodes (decision)
- A datapoint is classified based on the series of conditions it is evaluated on through the decision tree
- A decision then is specified to classify the questioned datapoint
- Hyperparameters: purity measuring criterion

Random Forest

(Elbeltagi, 2021)

- Random forest is multiple decision tree, created through different nodes
- Decision of Classification is determined based on the majority vote of the decision trees
- Hyperparameters: purity measuring Criterion, number of trees

Confusion Matrix

true negative

true positive

false negative

false positive

ΤN

TP

FN

FP

Multi-Class Classification

(Kruger, 2016)

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP - FN}$$

F1 - score

 $= 2 \times \frac{Recall \times Precision}{Recall + Precision}$

Computation Time = Time needed for

learning / prediction

Information Gain

State of

the art

State of the art

22

Optimal Threshold

State of

the art

Dataset DDRS

Evaluation

	CART		KNN		RF		
Threshold		ACC	СТ	ACC	СТ	ACC	СТ
lds	[0.1,0.3]	93.8	3.982	96.8	0.894	97.3	73.01
esho	[0.3,0.5]	93.8	3.903	96.8	0.723	97.3	66.41
rt th	[0.5,0.7]	93.5	3.206	95.0	0.6	96.3	67.65
ferei	[0.7,0.9]	95.4	2.909	95.7	1.078	97.5	67.124
ults at dif	[0.9,1.1]	93.7	1.779	95.3	0.602	95.4	35.5
	[1.1,1.3]	93.5	0.968	94.9	0.408	95.0	33.330
Res	[1.3,1.5]	96.3	1.009	97.4	0.326	97.32	31.91
Resul ts at SD	SD	93.8	4.851	96.8	1.515	97.27	76.137

By selecting this threshold, the remaining features were two : $$\ensuremath{\mathsf{Vpv}}\xspace$ labc

2D PCA at optimal Threshold

State o

the art

Confusion Matrix at Optimal Threshold

		С	ART M	odel C	Confusio	on Matr	ix		
F0	16431	337	236	34	15	215	459	544	- 20000
F1	341	17060	80	0	4	27	21	59	
F2	245	92	18236	4	28	140	73	542	- 15000
label E3	22	0	8	788	0	1	9	3	
l anı F4	9	1	29	0	23753	2	7	11	- 10000
F5	229	30	130	3	11	22751	23	510	
F6	440	12	69	22	12	41	10749	271	- 5000
F7	700	78	466	9	15	538	251	14176	
	F0	F1	F2 F	F3 Predict	F4 ted labe	F5	F6	F7	- 0

Most efficient Algorithm per Class

Label	CART				KNN		RF			
	Precision	Recall	F1score	Precision	Recall	F1score	Precision	Recall	F1score	
FO	96	97	96	96	99	98	96	99	98	
F1	98	99	99	99	99	99	99	99	99	
F2	99	99	99	99	100	100	99	99	99	
F3	90	90	90	96	89	92	97	89	92	
F4	100	100	100	100	100	100	97	94	95	
F5	93	94	94	97	94	95	97	94	95	
F 6	99	99	99	100	100	100	100	100	100	
F7	90	89	89	91	95	93	92	95	93	

Classifier	Cross Validation accuracy(%)	Training accuracy (%)	Testing accuracy(%)	Learning CT (s)	Prediction CT(s)
CART	96.97	99.99	97	1.072	0.015
KNN	97.36	98.33	97.88	0.464	2.17
RF	97.78	99.99	97.84	31.56	1.63

Conclusion

- The three algorithms performed well as evaluated through training testing and validation
- Based on testing accuracy KNN scores the highest value 97.88
- CART is the fastest to predict the faults, taking 0.015 seconds to classify and diagnose the faults
- DDRS proved that IG threshold is better to be tested in order to select optimal threshold
- DDRS also proved that if a threshold is optimal for a given algorithm, it can be generalized to other algorithms

Future Work

- Using DDRS on datasets with more features
- Currently working on a dataset with 80 features collected in 2017 from a wind turbine power system
- FDD study on wind turbines
- Developing an AI tool working on prognosis to predict the faults before occurring in addition to estimating the RUL of PV systems.

Contribution:

Paper under revision submitted to Solar Energy Journal - Elsevier

Q&A

Thank you