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PHM : Prognostic and Health Monitoring 

Data Acquisition Data processing Fault detection Fault diagnosis Prognosis Towards decision making for 
Condition Based Maintenance(CBM)System

Model Based 
Approaches

Data-Driven 
Approaches

• Observers
• Parity Space
• Bond Graph 
• Parameter 

Estimation 

Mainly based on 
Machine learning 
algorithms 

•SCADA
•DAQ

•Normalization 
•Filtering

Both approaches are aiming on improving the availability of the studied 
systems ( in this work it will be on PV systems) 
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Supervised

Labeled Data

• Classification and Regression 
Applications 

• SVM

• Decision Tree

• Logistic Regression 

• Bayesian Network 

Unsupervised

Unlabeled Data

• Clustering and Association

• K-mean clustering 

• KNN 
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Supervised
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Supervised ML Pipeline
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GPVS Open-source
• Dataset was created experimentally in a lab and 

referenced by Azzdine et al [1]

• Data is divided to 8 modes , 1 for normal operating 
mode and 7 others each representing a fault 

• Each mode is monitored for an average of 15 
seconds and the data is recorded, with a sampling 
rate of 1000 samples/second 
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[1] B. Azzeddine, B. Wahiba, G. Amar, and M. Saad, “Real-time fault detection in PV systems under MPPT using PMU and high-frequency 
multi-sensor data through online PCA-KDE-based multivariate KL divergence,” International Journal of Electrical Power & Energy Systems, 

vol. 125, p. 106457, Feb. 2021
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GPVS Dataset
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Label Case
Number of acquired 

samples
Description

F0 Normal Operating Mode
61006 No Fault injected

F1 Inverter fault
59006 Complete failure in one of the six IGBTs

F2 Feedback current sensor fault
64007 One phase sensor fault with 20% error.

F3 Grid anomaly 2961 Intermittent voltage sags

F4 PV array mismatch
79008 10 to 20% nonhomogeneous partial shading

F5 PV array mismatch
79007 15% open circuit in PV array

F6 MPPT/IPPT controller fault
39004

-20% gain parameter of PI controller in MPPT/ 
IPPT controller of the boost converter

F7

Boost converter controller fault
54006

+20% in time constant parameter of PI 
controller in MPPT/IPPT controller of the boost 
converter

State of 
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Labeling the data 
• Faults are induced during an unspecified time within operation 

• Time of fault was approximated based on Azzedine et al work 

• All data after fault induction are labeled as faulty by the name of the file
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Grid Connected PV System (GPVS)

Ipv Vpv Vdc ia ib ic va vb vc Iabc If Vabc Vf Label

2.214691 90.59448 147.0703 0.65039 -0.57739 -0.13343 -146.51 119.0256 26.43941 0.714643 49.99293 155.0793 50.00809 F0

2.176849 90.21606 147.0703 0.636962 -0.47668 -0.20728 -147.028 115.9155 29.6258 0.714386 50.0024 155.0849 50.00797 F0

2.266724 90.49072 147.0703 0.657104 -0.55725 -0.16028 -149.764 112.4077 33.98148 0.714386 50.0024 155.0849 50.00797 F0

2.348083 90.28931 147.6563 0.643676 -0.44983 -0.25428 -150.825 110.1656 39.10461 0.714386 50.0024 155.0849 50.00797 F0

2.315918 89.9231 147.0703 0.670531 -0.52368 -0.19385 -151.958 105.5728 43.45225 0.714232 50.01188 155.0898 50.00786 F0

2.212799 90.22217 147.3633 0.65039 -0.42297 -0.30127 -153.043 103.0173 48.50306 0.714232 50.01188 155.0898 50.00786 F0
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Data Scaling
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Data was normalized using z – score : 

𝑍 =
𝑥𝑖 − µ

𝜎

The new values will scale in a range of µ = 0 and s= 1
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Data Splitting

• Data is split based on 70/30 training/testing ratio 

• For training/validation k-fold cross validation method with k 
= 5 is used 
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Problem Statement 
• Based on interest on working on

feature engineering

• Information gain and PCA are used

• Information gain is calculated using
standard deviation as a threshold to
select features subset

• A strategy (DDRS) is proposed to find
the optimal threshold for feature
selection using information gain

• Classifiers are evaluated based on
DDRS threshold
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Data Dimensionality Reduction Strategy (DDRS)
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Information Gain 

• A filtering feature selection method aiming to determine the
significance of a certain feature used for classification

• Based on Shannon entropy equation :

𝐸(𝑦) = −σ𝑖
𝐶 𝑝𝑖 log2 𝑝𝑖

• Information gain =

Entropy of parent node – weighted entropy of child nodes
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Information Gain
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Principal component analysis (PCA) 
• A feature extraction method aiming to transform the set of

features into a new one based on principal components(PCs).

• Principal components are eigen vectors representing the original
data

• PCs represent the original dataset in an increasing accumulative
variance ; thus, the more principal components selected the more
variance (information) is represented

• The first component represents the highest variance, the second
PC the second highest, and so on

• The possible number of components to be formed is equal to the
total number of original features

• The explained variance value of each PC is calculated as following :

𝐸𝑉 =
𝑒𝑖𝑔𝑒𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑃𝐶 (𝑒𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟)

𝑡𝑜𝑡𝑎𝑙 𝑜𝑓 𝑒𝑖𝑔𝑒𝑛 𝑣𝑎𝑙𝑢𝑒𝑠
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KNN

• Datapoint is labeled based on the majority vote of its 
nearest neighbors

• Euclidean  distance is one of the ways to calculate the 
distance between the questioned datapoint and its 
neighbors 

• Hyperparameters : number of neighbors K – distance 
(Euclidean – cosine distance) 
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• A decision tree is created from root notes, 
internal and leaf nodes (decision) 

• A datapoint is classified based on the series of 
conditions it is evaluated on through the 
decision tree 

• A decision then is specified to classify the 
questioned datapoint 

• Hyperparameters: purity measuring criterion 

Classifiers 

• Random forest is multiple decision 
tree, created through different nodes 

• Decision of Classification is 
determined based on the majority 
vote of the decision trees 

• Hyperparameters: purity measuring 
Criterion, number of trees

CART Random Forest

State of 
the art 

Dataset DDRS Evaluation Results Conclusion

(Elbeltagi, 2021)(Mierswa, 2017) (Deepankar, 2021)



Confusion Matrix
Multi-Class Classification
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 − 𝐹𝑁

𝐹1 − 𝑠𝑐𝑜𝑟𝑒

= 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

Computation Time = Time needed for 

learning / prediction 
State of 
the art 

Dataset DDRS Evaluation Results Conclusion

(Kruger, 2016)
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PCA
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Selection of number of PCs 
at threshold [0.5-0.7] 



Optimal Threshold 
Threshold

CART KNN RF

ACC CT ACC CT ACC CT

R
e

su
lt

s 
at

 d
if

fe
re

n
t 

th
re

sh
o

ld
s [0.1,0.3] 93.8 3.982 96.8 0.894 97.3 73.01

[0.3,0.5] 93.8 3.903 96.8 0.723 97.3 66.41

[0.5,0.7] 93.5 3.206 95.0 0.6 96.3 67.65

[0.7,0.9] 95.4 2.909 95.7 1.078 97.5 67.124

[0.9,1.1] 93.7 1.779 95.3 0.602 95.4 35.5

[1.1,1.3] 93.5 0.968 94.9 0.408 95.0 33.330

[1.3,1.5] 96.3 1.009 97.4 0.326 97.32 31.91

R
e

su
l

ts
 a

t 
SD SD 93.8 4.851 96.8 1.515 97.27 76.137
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Optimal 
Threshold
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By selecting this threshold, the remaining features were two : 
Vpv & Iabc



2D PCA at optimal Threshold
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Confusion Matrix at Optimal Threshold
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Most efficient Algorithm per Class

Label
CART KNN RF

Precision Recall F1score Precision Recall F1score Precision Recall F1score

F0 96 97 96 96 99 98 96 99 98

F1 98 99 99 99 99 99 99 99 99

F2 99 99 99 99 100 100 99 99 99

F3 90 90 90 96 89 92 97 89 92

F4 100 100 100 100 100 100 97 94 95

F5 93 94 94 97 94 95 97 94 95

F6 99 99 99 100 100 100 100 100 100

F7 90 89 89 91 95 93 92 95 93
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Classifier
Cross Validation 

accuracy(%)
Training 

accuracy (%)
Testing 

accuracy(%)
Learning CT (s) Prediction CT(s)

CART 96.97 99.99 97 1.072 0.015

KNN 97.36 98.33 97.88 0.464 2.17

RF 97.78 99.99 97.84 31.56 1.63



Conclusion
• The three algorithms performed well as evaluated through training

testing and validation

• Based on testing accuracy KNN scores the highest value 97.88

• CART is the fastest to predict the faults, taking 0.015 seconds to
classify and diagnose the faults

• DDRS proved that IG threshold is better to be tested in order to
select optimal threshold

• DDRS also proved that if a threshold is optimal for a given
algorithm, it can be generalized to other algorithms
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Future Work 
• Using DDRS on datasets with more features

• Currently working on a dataset with 80 features collected in 2017
from a wind turbine power system

• FDD study on wind turbines

• Developing an AI tool working on prognosis to predict the faults
before occurring in addition to estimating the RUL of PV systems.

Contribution:

Paper under revision submitted to Solar Energy Journal - Elsevier
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Q & A
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Thank you 
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