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Prognostics and Health Management For Fuel Cells
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Outline
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Degraaation Vlode
Degradation Data

Source: |IEEE PHM Data Challenge 2014
Overview: The FCLAB Research Federation provides datasets featuring

experiments on Fuel Cell Stack (FCS) ageing under varied conditions.
Tests:

@ FC1: Durability under stationary nominal load
@ FC2: Durability with current ripples

Characterization: Polarization curve tests and EIS.
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Degradation

Degradation Behavior in Fuel Cells

o Rapid Early Degradation: Degradation is faster at the beginning of
a fuel cell’s life, especially under variable loads.

ion Curves under Dynamic Load Cycles
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Degradation

Health Index (HI)

The fuel cell internal resistance is chosen

as a health index, which can be

extracted from the polarization curves

empirical equation: istance vs. Time

022

Vfc =E — Vact - Vohm - Vconc (1)

20

Components of the equation:

Resistance (Ohm.cm?)

@ Activation Losses:
Ve = Aln (1)

[ 260 a0 60 60 1000
i

@ Ohmic Losses: Vo = i - Rohm

@ Concentration Losses:
Veone = me(n~:)
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Degradation

Homogeneous vs Non-Homogeneous Gamma Process

e Homogeneous: The degradation is stationary A(t) = at, o > 0.
e Non-Homogeneous: A(t) is non-linear, for example:

o Power Law: A(t) = at?, a,3 > 0.
o Exponential Law: A(t) =1 — e At

Stochastic degradation (Gamma Process) Stochastic degradation (Gamma Process)

Degradation X(1)
Degradation X({)

Time (t) Time ()
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Degradation

Gamma Process for Modeling Resistance Increments

Definition: A continuous-time
stochastic process (X¢)¢>0 is called a
gamma process with shape A(t) and rate
b > 0, denoted Gam(A(t), b), if:

04 FT ‘Gamma Process
@ Xp = 0 almost surely, fTTmmmmmmmmmmmmm oo
@ (X:)t>0 has independent o8
increments, . X
@ Increments follow %o0s }X(t)X(S)
Xi — Xs ~ Gam(A(t) — A(s), b). X
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Degradation

Gamma Process for Modeling Resistance Increments

Resistance increments can be modelled as a non-homogeneous gamma
process with a shape function:

At) = at?
Where:

@ «a: Shape parameter affecting the growth of increments
o 3. Exponent defining the power law growth
@ b: Rate parameter of the gamma distribution

The parameters «, 3, and b can be estimated using the maximum
likelihood method. However, these values describe degradation only under
the nominal load observed in the data. To extend this model for load
dependency, « is defined as a function of load L as follows:

(L) = A(L = Lnom)? + B (2)
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Degraaation Vlode

Load Dependent Model

The degradation under a constant load L between times t; and t; is
modeled by a non-homogeneous, load-dependent Gamma process:

AR, (t1, b, L) ~ Gamma (a(L) ()% — (L) - (1), b) (3)

Therefore, the degradation rate due to load amplitude L during the time
interval [t1, t2], denoted D(L, t1, t2), is given by:

@ b —a B

For static load, Reliability R(t) and RUL are defined analytically by:

Rty =1 1Dt +0)" — &), (FT — )/ -
M(a(L)((t + to)? — £3))

E[RUL] = /0 T R() dt (6)




Degradation

Simulations

. Piecewise Constant Load demand o Eya Cell Stochastic Load-Dependant Degradation (Gamma Process)
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gy Management Strategy

Energy Management Scheme
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nergy Management Strategy

Objective Function Formulation

According to (4), in a system composed of n stacks, the total load L is
allocated to minimize expected average resistance increments in the
complete system over a future time horizon h:

J(L,‘, ti, h) = i CY(L,')(t,' + h)ﬂ — a(Li)(ti)B

; + KAL, (7)

i=1

Subject to:
>Li=L Lpin < Li < Loy
i=1

Where

@ L; is the load allocated to stack /.
@ t; is the age of stack i.

@ KAy, is increment due to the load variation after allocation.
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nergy Management Strategy

Simulation Setup

@ Two stacks system is considered.

@ Load allocation is done periodically at inspection times or after unit
replacement.

@ Stacks are immediately replaced upon failure.

@ Comparison of load allocation strategy with average load split
strategy for fuel cell lifetime.

Table: Simulation Parameters

Parameter Value

Run Time 10° hours

Time Step 10 hours

Load Lnom + Lmax = 6.562 W /cm?

Failure Threshold 0.1 Q- cm?
Inspection Time 300 hours
Decision Horizon 300 hours
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nergy Management Strategy

Load Allocation

0.2 Simulated Degradation paths with Load Allocation decision Over Time
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nergy Management Strategy

Proposed Strategy vs Average Load Split

Parameter Load Allocation Strategy Average Load Split

Total Replacements 1235 1277

Mean Lifetime (hours) 1619.15 1566.00

95% Cl for Mean Lifetime (hours) [1605.37, 1632.93] [1551.14, 1580.86]
c10? Histogram of Lifstimes Distribution for Load Allocation Strategy and Average Load Split
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Conclusion and Future Work

@ Main Results: A non-homogeneous gamma process is used to model
fuel cell degradation using resistance as health index, post prognostic
energy management can enhance system lifetime.

Future Directions:
@ Incorporate more real-time load data to improve model accuracy and
to investigate load degradation relation.
@ Extract more sophisticated health indexes that can reflect internal
components state.
@ Expand analysis to multi-stack systems under varying operational
conditions like driving cycles.
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