Control allocation of deteriorating over-actuated system

(<u>Shuo GAO</u>, Yves LANGERON, Khac Tuan HUYNH, Antoine GRALL)¹ ¹University of Technology of Troyes, Troyes, France

> Congrès annuel de la SAGIP Sûreté / Surveillance / Supervision May 2025

Table of contents

1 Introduction

2 Problem statement

3 Case study

- **4** Results and discussion
- **5** Takeaways and future work

Over-actuated system

- Definition: More actuators than necessary to control its degrees of freedom.
- Sey characteristics:
 - Redundancy
 - Fault tolerance
 - Performance optimization
- Typical applications:
 - Aircraft with multiple control surfaces
 - Electric vehicles with independent motors on each wheel
- Skey challenges:
 - How to distribute control effort among redundant actuators?
 - How to adapt the control strategy as the system deteriorates?

¹ Reconfigurable Dynamic Control Allocation with SDRE As a FTFC for NASA GTM Design.

Example of actuator redundancy in aircraft¹

Introduction 000		Results and discussion	Takeaways and future work

Control allocation

$$\xrightarrow{r(t)} \text{Control law} \xrightarrow{v(t)} \text{Allocation} \xrightarrow{u(t)} \text{Plant} \xrightarrow{x(t)} \text{Plant}$$

The structure of an over-actuated system with a control allocation module

$$\dot{x}(t) = Ax(t) + B_u u(t) \qquad \Rightarrow \qquad \begin{array}{c} (1) \quad \dot{x}(t) = Ax(t) + B_v v(t), \\ (2) \quad v(t) = Bu(t), \quad B = \left(B_v^T B_v\right)^{-1} B_v^T B_u \end{array}$$

- $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$
- $A \in \mathbb{R}^{n \times n}$, $B_u \in \mathbb{R}^{n \times m}$

- $v(t) \in \mathbb{R}^k$, k < m
- $B_v \in \mathbb{R}^{n \times k}$, $B \in \mathbb{R}^{k \times m}$

Introduction		Results and discussion	Takeaways and future work

Control allocation solver

A weighted least squares (WLS) optimization approach:

$$u = \operatorname*{arg\,min}_{\underline{u} \le u \le \bar{u}} \gamma \| W_v(Bu - v) \|^2 + \| W_u(u - u_d) \|^2,$$

- 1: Tracks the virtual control as closely as possible.
- 2: Minimizes actuator effort to save energy.

Motivation: Actuators degrade during operation \rightarrow redistribute control effort based on health.

Goal: Design a degradation-based weighting matrix W_u : prioritize healthy actuators, limit degraded ones \rightarrow extend system lifetime.

Introductio	on Prob ●0	lem statement		Results and discussion	Takeaways and future work
Plan	t modeling				
	System dynamics	$\dot{x}(t) = A$	$x(t) + B_u \Delta(t) u(t)$		
	Degradation model	$d_i(t_{d+1})$	$= d_i(t_d) + \alpha_i \int_{t_d}^{t_{d+1}}$	$ u_i'(t) dt + \beta_i \int_{t_d}^{t_{d+1}} u_i^2$	$f(t) dt + \sigma_i \Delta B$
	Effectiveness model	$\Delta(t) = \text{dia}$	$g\left(\delta_1(t),\cdots,\delta_m(t) ight),\delta$	$f_{i}(t) = f(d_{i}(t_{d})), 0 \le \delta_{i} \le 1,$	$t_d \le t \le t_{d+1}$
	Weighting matrix	$W_u(t) = d$	$\operatorname{iag}(W_{u1}(t),\cdots,W_{um})$	$(t)), W_{ui}(t) = g(d_i(t_d)), t_d$	$\leq t \leq t_{d+1}$

Introduction 000	Problem statement	Results and discussion	Takeaways and future work 00

Effectiveness model

Piecewise constant

$$\delta_{i}(d_{i}) = \begin{cases} 1, & 0 \leq d_{i} < \tau_{1} \\ \delta_{2}, & \tau_{1} \leq d_{i} < \tau_{2} \\ \vdots \\ \delta_{N}, & \tau_{N-1} \leq d_{i} < d_{\max} \\ 0, & d_{i} = d_{\max} \end{cases}$$

Continuous

- Power law $\delta_i = (1 \frac{d_i}{d_{\max}})^p$;
- Exponential $\delta_i = e^{-qd_i}$;
- Etc.

Gao et al. (UT

Introduction Problem statement Case study Results and discussion Takeaways and future work 000 00	Introduction 000			Results and discussion ••••••	Takeaways and future wor
---	---------------------	--	--	----------------------------------	--------------------------

System behaviour (Piecewise constant effectiveness model)

Mean control input (missions 26-30)

Sampled paths of actuator 3 (Piecewise constant effectiveness model)

Introduction problem statement Case study results and discussion fakeaways and future 000 00 000 00 000 00 000 00	Introduction 000	Problem statement 00	Case study O	Results and discussion	Takeaways and future w
---	---------------------	-------------------------	-----------------	------------------------	------------------------

Degradation at component level (Piecewise constant effectiveness model)

Failure time histogram per actuator

Introduction Pro 000 00		Results and discussion	Takeaways and future work
	· · · · · · · · · · · · · · · · · · ·		

Loss of effectiveness (Piecewise constant effectiveness model)

Introduction Problem statement Case study Results and discussion Takeaways and fut

Degradation at system level (Piecewise constant effectiveness model)

Degradation index

$$D(t_d) = \sum_{j=1}^{J} \sum_{t=t_j+0.75T_j}^{t_j+T_j} |x(t) - r(t)|,$$

- J: number of reference step transitions
- T_j : duration of each step transition

• $t_j = \sum_{l=1}^J T_l t_d + \sum_{l=1}^{j-1} T_l$: start time of step transition j

Failure threshold $D_L = 0.1$

Introduction	Problem statement	Case study	Results and discussion	Takeaways and future work
000	00	O	00000●	

Case of continuous effectiveness model

Introduction 000		Results and discussion	Takeaways and future work ●○

Takeaways

- Dual time scales are considered for dynamics and degradation;
- Both piecewise constant and continuous effectiveness models are analyzed;

😔 Future work

- Quantify degradation at component level;
- Infer degradation at system level.

Introduction	Problem statement	Case study	Results and discussion	Takeaways and future work
000	00	O		○●

Thank you for your attention!