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Introduction & Problem Relevance

Heating, Ventilation, and Air Conditioning (HVAC) systems are crucial
infrastructure components that account for approximately 40% of building
energy and are prone to experience faults like sensor drifts and actuator
degradation.

Traditional fault-tolerant control relies on precise system models, which is
challenging for large, coupled multi-zone HVAC installations.

Recent studies indicate that combining data-driven system identification
methods with reinforcement learning controller enhances control
performance. [2,3,4]

Example: Combining data-driven modeling (DMD) with deep RL has
improved control tasks (e.g. stabilized vortex shedding with 8% drag
reduction).

This motivated our hybrid approach: we integrated real-time DMD-based
system identification with a Deep Q-Network controller for robust,
fault-tolerant multi-zone HVAC control.

A. Makwana et al. DMD-Augmented DRL for FTC in HVAC 3 / 13



Problem Statement & Objectives

Problem: Maintain desired temperature setpoints in each zone of a
multi-zone HVAC system under sensor and actuator faults. Thermal
coupling between zones and measurement errors (e.g. a biased
temperature sensor) make control difficult.

Objectives:
Develop a hybrid control framework that combines DMD-based system
identification with a deep Q-Network (DQN) controller.
Detect faults online by monitoring prediction residuals between the
DMD model and actual sensor readings.
Ensure robust temperature regulation: learn optimal control policies
with the DQN, and activate a safe PID fallback mode if a significant
fault is detected.
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Multi-zone HVAC System Model

Zone thermal dynamics:

dTi

dt
= −Ti − Tamb,i

τ
+
∑
j ̸=i

cij(Tj − Ti ) + γiui , (1)

where: Ti (t) is the temperature in zone i at time t. Tamb,i is the ambient
temperature. τ is the thermal time constant. cij represents inter-zone
coupling coefficients. γi is the control gain, modified by actuator efficiency.
ui (t) ∈ {−1, 0, 1} represents discrete control actions.

Figure 1: Schematic of the multi-zone HVAC system
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The Dynamic Mode Decomposition Module

Dynamic Mode Decomposition (DMD) is a data-driven method used to
analyze the dynamics of complex systems.[1]

DMD breaks down the evolution of a dynamic system into modes that are
each associated with a certain frequency and growth rate.

It uses snapshots of the system at different time points and applies
techniques like SVD to extract spatial and temporal modes.

The basic idea is to approximate the system’s behavior as a sum of
eigenmodes, similar to spectral decomposition, but applied to time-series
data.

Let xk = col(T1(tk),T2(tk),T3(tk)) where tk = kh, h being the sampling
period. So here, what the DMD actually does is to approximate the Leading
eigen decomposition of the best fit linear operator (the Ω matrix) that
advances xk to xk+1 [xk+1 ≈ Ωxk ].

By decomposing the data into Dominant Spatial Coherent Modes, we can
more easily understand the dominant dynamics of the system and predict
future behavior.
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The Dynamic Mode Decomposition Module

We define the DMD residual as:

r = ∥Ωxk − xk+1∥2. (2)

Under the nominal conditions, the residual r remains small and nearly
constant. A sudden change around the mean value of r could indicate a
system fault. If that change is significant and exceeds a predefined threshold
then a PID fall-back mechanism is triggered that takes over the entire
control of the system.

A. Makwana et al. DMD-Augmented DRL for FTC in HVAC 7 / 13



The Deep Q-Network FTC Controller

The FTC controller is a Deep Q-Network(DQN) controller [6] that learns the
control policies based on the state estimations from DMD. The state vector
of DQN includes the zone temperatures, and the action space includes all
possible joint actions. The training follows standard DQN procedures with
ϵ-greedy exploration and experience replay. The reward function Rt is
designed to penalize deviations from the desired setpoint and energy
consumption:

Rt = −

(
N∑

k=1

β1∥xk − Tsp∥1 +
N∑

k=1

β2∥ak − ak−1∥1

)
(3)

where : Tsp is the set point vector of the three zones and the action at time
k is defined as ak = col(u1(tk), u2(tk), u3(tk)) , β1 is the weight for the
temperature deviation penalty, and β2 is the weight for the energy
consumption penalty.

As a low-dimensional system representation given by DMD is used by the
DQN controller to learn the control policies, a significant reduction is
observed in the computational complexity and training time, while the
dominant dynamics of the original system model are still retained.
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Simulated Experimental Setup

The entire framework was implemented in Python using PyTorch.
Simulations were conducted over 120 episodes, with faults (a +2◦C sensor
bias and 60% actuator degradation) introduced at Episode 70. Metrics show
rapid training performance and stable DMD residuals. After fault
introduction, the DQN module adapts to the sudden dynamical changes,
resulting in zero PID fallbacks, thus demonstrating the FTC performance.

Figure 2: Performance metrics across training episodes. (a) Total reward; (b)
Average DMD residual; (c) Safe Fallback Triggered.

A. Makwana et al. DMD-Augmented DRL for FTC in HVAC 9 / 13



Results and Conclusion

Results demonstrate pre (Ep 66) and post fault injection (Ep 101) stable
control with true temperature trajectories converging to the set point (i.e.
11◦C) and sensor reading plot showing robust control even after +2◦C
sensor bias.

Figure 3: Temperature trajectories for selected episodes. (a) True Zone
Temperature; (b) Noisy Sensor Readings.
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Results and Conclusion

Conclusion: We presented a hybrid DMD-Augmented-DRL framework for
Fault-Tolerant Control of Multi-Zone HVAC systems.The DMD module
extracts a low-dimensional representation of system dynamics from true
temperature trajectories, enabling prompt fault detection via prediction
residuals. The DQN then utilizes these enhanced state estimates to learn
optimal control policies, with a PID fallback activated when residuals exceed
a threshold. This approach reduces computational complexity while ensuring
robust control under sensor and actuator faults.
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