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System considerations and problem statement 

Let’s consider a discrete-time dynamical system

• State: 𝑥 ∈ Ω ⊂  ℝ𝑛

• Control Input: 𝒰 = {𝑢 ∈ ℝ𝑚: −𝜆 ≤ 𝑢 ≤ 𝜆} 

• Dynamics: 𝑥𝑘+1 = 𝑓 𝑥𝑘 + 𝑔 𝑥𝑘 𝑢

• The system is fully observable and controllable

• 𝑓 𝑥𝑘 ∈ ℝ𝑛, 𝑔 𝑥𝑘 ∈ ℝ𝑛×𝑚 are Lipschitz continuous 

• The sets Ω ,𝒰 are compact

• The final state 𝑥𝑁 = 0 is known

June 25 Safe Reinforcement Learning 4

Problem: Optimal Control 

𝐽 𝑥𝑘 , 𝑢𝑘 = 

𝑘=𝑖

𝑁−1
1

2
(𝑥𝑘

⊤𝑸𝑥𝑘 + 𝑢𝑘
⊤𝑹𝑢𝑘) 

𝑢⋆ = arg min
𝑢

𝐽(𝑥𝑘 , 𝑢𝑘)

where 𝑄 = 𝑄⊤ ≥ 0; 𝑅 = 𝑅⊤ > 0

Objective: Solve the regulation problem (𝑥𝑘 → 𝑥𝑁 = 0 as 𝑘 → 𝑁) under input saturation and state 
constraints (𝑥min≤ 𝑥𝑘 ≤ 𝑥max )
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Motivation

• Motivation: The traditional optimal control algorithm is offline and is not adaptive in nature. The objective is to 
develop an online adaptive optimal control algorithm under both state constraints (safety) and input saturation 
using Reinforcement Learning algorithms.

June 25 Safe Reinforcement Learning 5

The optimal control problem can be solved using Reinforcement Learning

Figure 1: Traditional Optimal Control vs. Proposed RL based optimal control
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Reinforcement Learning 

• Reinforcement Learning is a family of learning algorithms where the objective is to learn the optimal policies to 
fulfil the user optimization requirements. The goal here is to find the optimal control policy/control law for a 
dynamical system (discrete or continuous).

June 25 Safe Reinforcement Learning 6

Figure 2: Learning in reinforcement learning compared to classical control theory
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Reinforcement Learning Terminology

• Reward function:  Is a quadratic function same as the instantaneous cost function in optimal control

June 25 Safe Reinforcement Learning 7

𝑉ℎ 𝑥𝑘 = 𝑟 𝑥𝑘 , ℎ 𝑥𝑘 + 𝛾𝑉ℎ 𝑥𝑘+1 , 𝑉 0 = 0

• The value function can be rewritten as,

𝑉ℎ 𝑥𝑘 = 

𝑘=𝑖

𝑁−1

𝛾𝑘−𝑖
1

2
(𝑥𝑘

⊤𝑸𝑥𝑘 + 𝑢𝑘
⊤𝑹𝑢𝑘) 

• Value function: It is the same cost-to-go function, also called as the cumulative reward function

where ℎ is the control policy such as 𝑢𝑘  =  ℎ(𝑥𝑘) and 0 ≤ 𝛾 ≤ 1 is called the discount factor and 𝛾 =  1 for optimal 
control problems.

𝑟 𝑥𝑘 , 𝑢𝑘 =
1

2
(𝑥𝑘

⊤𝑸𝑥𝑘 + 𝑢𝑘
⊤𝑹𝑢𝑘)

ℎ⋆ 𝑥𝑘 = arg min
ℎ(⋅)

𝑟 𝑥𝑘 , ℎ 𝑥𝑘 + 𝛾𝑉ℎ
⋆ 𝑥𝑘+1

• Using Bellman’s optimality principle, the optimal control policy can be obtained by,

𝑉ℎ
⋆ 𝑥𝑘 = 𝑟 𝑥𝑘 , ℎ 𝑥𝑘 + 𝛾𝑉ℎ

⋆ 𝑥𝑘+1
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RL algorithm to solve the optimal control 

• The RL framework provides an important algorithm to solve the optimal control problems, called Policy Iteration 
[1].

• The Policy Iteration (PI) algorithm can be implemented along the system trajectory to minimize the cost function 

• Typically, the PI algorithm involves two steps:

1. Policy evaluation (value function update)

2. Policy improvement 

June 25 Safe Reinforcement Learning 9

[1] S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018

𝑉ℎ,𝑗+1 𝑥𝑘 = 𝑟 𝑥𝑘 , ℎ 𝑥𝑘 + 𝛾𝑉ℎ,𝑗+1 𝑥𝑘+1

ℎ𝑗+1 𝑥𝑘 = arg min
ℎ(⋅)

𝑟 𝑥𝑘 , ℎ 𝑥𝑘 + 𝛾𝑉ℎ,𝑗+1 𝑥𝑘+1

Here, 𝑘 is the discrete time-step and 𝑗 is the iteration step
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Limitations of policy iteration to solve optimal control problem

1. Policy Evaluation (Value function update)

2. Policy Improvement 

June 25 Safe Reinforcement Learning 10

𝑉ℎ,𝑗+1 𝑥𝑘 = 𝑟 𝑥𝑘 , ℎ 𝑥𝑘 + 𝛾𝑉ℎ,𝑗+1 𝑥𝑘+1

ℎ𝑗+1 𝑥𝑘 = arg min
ℎ(⋅)

𝑟 𝑥𝑘 , ℎ 𝑥𝑘 + 𝛾𝑉ℎ,𝑗+1 𝑥𝑘+1

These equations are offline, nonlinear and backwards-in-time

Solution:   1. Reformulating the Policy evaluation step 
 2. Using Neural Networks (NN’s) to approximate the unknown nonlinear functions
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Online, Policy Iteration algorithm

1. The value function is reformulated
𝑉ℎ 𝑥𝑘 = 𝑟 𝑥𝑘 , ℎ 𝑥𝑘 + 𝛾𝑉ℎ 𝑥𝑘+1

𝑒 𝑥𝑘 = 𝑟 𝑥𝑘 , ℎ 𝑥𝑘 + 𝛾𝑉ℎ 𝑥𝑘+1  − 𝑉ℎ(𝑥𝑘) 

2. The functions 𝑉 𝑥𝑘  and ℎ 𝑥𝑘  are unknown and nonlinear and neural networks are used to approximate the 
functions

𝑉 𝑥𝑘 = 𝑊⊤𝜓 𝑥    (also called as critic network)

ℎ 𝑥𝑘 = 𝑈⊤𝜎 𝑥  (also called as actor network)

Thus, we get online,  forward-in-time, RL algorithm. The new algorithm is [1]

June 25 Safe Reinforcement Learning 11

[1] S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018

Policy evaluation:  𝑊𝑗
⊤ 𝜓 𝑥𝑘 − 𝜓 𝑥𝑘+1 = 𝑟 𝑥𝑘 , ℎ𝑗(𝑥𝑘)

Policy improvement: ℎ𝑗+1 =
𝛾

2
𝑅−1𝑔⊤ 𝑥𝑘 ∇𝜓⊤ 𝑥𝑘+1 𝑊𝑗+1

Regression vector 
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Online policy Iteration

June 25 Safe Reinforcement Learning 12

• The online data collected is used to solve the 𝜓 𝑥𝑘 − 𝜓 𝑥𝑘+1  regression vector for the neural network weights 
𝑊⊤.

• For the reward function 𝑟 𝑥𝑘 , 𝑢𝑘 , the algorithm can be used to obtain adaptive-optimal control policy.
•  However, to initialize the algorithm the initial policy 𝑢0 = ℎ0 𝑥0  must be admissible. 

Policy Evaluation:  𝑊𝑗
⊤ 𝜓 𝑥𝑘 − 𝜓 𝑥𝑘+1 = 𝑟 𝑥𝑘 , ℎ𝑗(𝑥𝑘)

Policy improvement: ℎ𝑗+1 =
𝛾

2
𝑅−1𝑔⊤ 𝑥𝑘 ∇𝜓⊤ 𝑥𝑘+1 𝑊𝑗+1
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Input Saturation

• To introduce input saturation, the reward function is modified from,

𝑟 𝑥𝑘 , 𝑢𝑘 =
1

2
𝑥𝑘

⊤𝑸𝑥𝑘 + 𝑢𝑘
⊤𝑹𝑢𝑘

• To a nonquadratic functional [2,3] given by:
𝑟 𝑥𝑘 , 𝑢𝑘 = 𝑥𝑘

⊤𝑸𝑥𝑘 + 𝑈(𝑢𝑘)

Where, 

𝑈 𝑢𝑘 = න
0

𝑢𝑘

𝜆 Γ−⊤
𝑣

𝜆
𝑹 𝑑𝑣 

One candidate for the Γ ⋅  is tanh ⋅  function. Now, the policy improvement becomes,

ℎ𝑗+1 = 𝜆 tanh(
𝛾

2
𝑅𝜆 −1𝑔⊤ 𝑥𝑘 ∇𝜓⊤ 𝑥𝑘+1 ) 𝑊𝑗+1

The control input is learnt under saturation bounds 𝒖𝒌 ≤ 𝝀

June 25 Safe Reinforcement Learning 14

[2] Shihan Liu, Lijun Liu, and Zhen Yu. “Safe Reinforcement Learning for Affine Nonlinear Systems with State Constraints and Input Saturation using Control Barrier Functions”. In: 
Neurocomputing 518 (2023), pp. 562–576.
[3] Huaguang Zhang, Derong Liu. “Neural-Network-Based Near-Optimal Control for a Class of Discrete-Time Affine Nonlinear Systems with Control Constraints”. In: IEEE Transactions on 
Neural Networks 20.9 (2009), pp. 1490–1503
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Safety

• The concept of safety is to ensure that the system states are always within a user defined safe set 𝒞. 

•  In other words, safety here is to provide formal guarantees on constraint enforcement.

June 25 Safe Reinforcement Learning 15

Exploration noise:  Typically, an external noise is added to 
the RL algorithm that improves the ability to learn 
optimal policies that could be devised such that it also 
satisfies Persistence of Excitation (PoE) condition. 

• Advantages: Searches the state-space to find the 
optimal policy quickly and to avoid any local minima.

• Disadvantages: The system may reach undesirable 
control policies that my ’force’ the system states out 
of the safe set (could lead to infeasibility of 
constraints).

Several ways to ensure safety, in this study we consider 
Barrier function based approach

Figure 3: All time safety [4] [4] Hwang, Sunwoo, et al. "Safe Motion Planning and Control for Mobile Robots: A Survey.“ 
International Journal of Control, Automation and Systems 22.10 (2024): 2955-2969.
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Barrier function

• The idea is to add the barrier function within the reward function such that reward function value tends to infity 
when the system states approach the boundary of the safe set [5,6]. 

June 25 Safe Reinforcement Learning 16

[5] Aaron D Ames et al. “Control Barrier Function Based Quadratic Programs for Safety Critical Systems”. In: IEEE Transactions on Automatic Control 62.8 (2016), pp. 3861–3876.
[6] Richard Cheng et al. “End-to-end Safe Reinforcement Learning through Barrier Functions for Safety-Critical Continuous Control Tasks”. In: Proceedings of the AAAI conference on 
artificial intelligence. Vol. 33. 01. 2019, pp. 3387–3395

For example, the following function 𝐵𝛾 𝑥𝑘  is added to the reward function along with the input saturation

𝐵𝛾 𝑥𝑘 = log
𝑥min

𝑥𝑘 + 𝑥min
+ log

𝑥max

𝑥𝑘 + 𝑥max

𝑟 𝑥𝑘 , 𝑢𝑘 = 𝑥𝑘
⊤𝑸𝑥𝑘 + න

0

𝑢𝑘

𝜆 Γ−⊤
𝑣

𝜆
𝑹 𝑑𝑣 + 𝐵𝛾 𝑥𝑘

Input saturation Barrier function

Figure 4:
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Online policy iteration algorithm

June 25 Safe Reinforcement Learning 17

• Due to the nature of policy iteration algorithm, we need an initial admissible policy to initiate the algorithm. To this 
end, we also require that the policy is safe. Thus, we utilize Control Lyapunov functions (CLF) and Control Barrier 
functions (CBF) [4].

[5] Aaron D Ames et al. “Control Barrier Function Based Quadratic Programs for Safety Critical Systems”. In: IEEE Transactions on Automatic Control 62.8 (2016), pp. 3861–3876.

• The CLF and CBF conditions are combined with Quadratic programming (QP) optimization to give an initial 
policy that is both admissible and safe [4]. (Also called as QP-CLF-CBF optimization).

ℎ0 𝑥0 = min
1

2
𝑢𝑘

⊤𝑢𝑘

𝑠. 𝑡. Δ𝐿 𝑥𝑘 , 𝑢𝑘 ≤ −𝛼1 𝐿 𝑥𝑘 (CLF condition)

Δ𝐵 𝑥𝑘 , 𝑢𝑘 ≥ −𝛼2 𝐵 𝑥𝑘   (CBF condition)

• Where, 𝐿 𝑥𝑘  is the Lyapunov function candidate and 𝐵 𝑥𝑘  is the barrier function candidate. 𝛼1 ⋅ , 𝛼2(⋅) are 
class 𝒦∞ functions. Δ𝐿 𝑥𝑘 , 𝑢𝑘 = 𝐿 𝑥𝑘+1) − 𝐿(𝑥𝑘  and Δ𝐵 𝑥𝑘 , 𝑢𝑘 = 𝐵 𝑥𝑘+1 − 𝐵 𝑥𝑘 .
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Example – 1: Linear DC Motor system 

• The equations of motion for the DC motor are in continuous time and the system is discretized using the ’zero-
order hold’ method. The equations of motion are: 

ሶ𝜔
ሶ𝑖

=
−

𝑏

𝐽
−

𝑘

𝐽

−
𝑘

𝐿
−

𝑅

𝐿

𝜔
𝑖

+
0
1

𝐿

𝑉

• The DT- system is:  𝑥𝑘+1 = 𝐴 𝑥𝑘 + 𝐵 𝑢𝑘 . The system is fully observable and controllable. 

June 25 Safe Reinforcement Learning 20

For 𝑉 𝑥𝑘 = 𝑥𝑘
⊤𝑃𝑥𝑘, the ARE becomes: 

𝐴⊤𝑷𝐴 − 𝑷 + 𝑄 − 𝐴⊤𝑷𝐵 𝑅 + 𝐵⊤𝑷𝐵 −1 𝐵⊤𝑷𝐴 = 0

The optimal gain (Kalman gain): 
𝑲 = 𝑅 + 𝐵⊤𝑷𝐵 −1𝑷𝐴

The critic network is expected to learn the solution to the ARE equation, whereas the actor network is expected to 
learn the optimal gain.
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DC motor (contd.)

June 25 Safe Reinforcement Learning 21

Figure 6: Real-time learning of system states
Figure 7: Control learnt vs ARE solution
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DC motor (contd.)

June 25 Safe Reinforcement Learning 22

𝑷𝟏𝟏 𝑷𝟏𝟐

𝑷𝟐𝟏 𝑷𝟐𝟐

Critic 
weights 
𝑾

𝑷𝟏𝟏 = 𝟓. 𝟒𝟐𝟖𝟐, 𝑷𝟏𝟐 = −𝟐. 𝟏𝟑𝟏𝟏,
𝑷𝟐𝟏 = −𝟐. 𝟏𝟑𝟏𝟏, 𝑷𝟐𝟐 = 𝟑. 𝟓𝟗𝟔𝟕

ARE 
solution 

𝑷𝟏𝟏 = 𝟓. 𝟒𝟐𝟖𝟐 , 𝑷𝟏𝟐 = −𝟐. 𝟏𝟑𝟏𝟐,
𝑷𝟐𝟏 = −𝟐. 𝟏𝟑𝟏𝟎, 𝑷𝟐𝟐 = 𝟑. 𝟓𝟗𝟔𝟖

𝑲𝟏 𝑲𝟐

Actor 
weights 
𝑈

𝑲𝟏 = 𝟎. 𝟎𝟒𝟐𝟓, 𝑲𝟐 = 𝟎. 𝟎𝟕𝟎𝟒

ARE 
solution

𝑲𝟏 = 𝟎. 𝟎𝟒𝟐𝟓, 𝑲𝟐 = 𝟎. 𝟎𝟕𝟎𝟒

Figure 8: Convergence of actor and critic network weights

For 𝑄 =
0.1 0
0 0.1

, 𝑅 = 1



S
A

G
IP

-2
0
2
5

Example-2: Nonlinear system

• The nonlinear system considered is an inverted pendulum system with the following dynamics:

𝑥1𝑘+1 = 𝑥1𝑡
+ 𝑥2𝑡

Δ𝑡 +
3𝑔

2𝑙
sin 𝑥1𝑡

Δ𝑡2 +
3

𝑚𝑙2
𝑢𝑡Δ𝑡2

𝑥2𝑡+1 = 𝑥2𝑡
+

3𝑔

2𝑙
sin 𝑥1𝑡

Δ𝑡 +
3

𝑚𝑙2
𝑢𝑡Δ𝑡

Here, Δ𝑡 is the sampling time, −2.2 ≤ 𝑥1≤ 2.2 is the angular position and −2.2 ≤ 𝑥2≤ 2.2 is the angular velocity and 
𝑢𝑡 is the control input torque with −5 ≤ 𝑢𝑡≤ +5 .

The neural network considered are basis functions given by:

Critic : 𝜙 𝑥 = [𝑥1
2, 𝑥2

2, 𝑥1𝑥2, 𝑥1
2𝑥2

3, 𝑥1
3𝑥2

2, 𝑥1
2 𝑥2

2]

Actor:  𝜓 𝑥 = [𝑥1, 𝑥2]

The exploration noise added is:
𝑒𝑡 = ∑𝑎𝑗𝜔 sin 𝑓𝜂

where 0 < 𝑎 < 1 is a decay constant, 𝜔 is a Gaussian random variable and 𝑓𝜂 = [1,3,5,7,9] 

June 25 Safe Reinforcement Learning 23
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Inverted pendulum (contd.)

June 25 Safe Reinforcement Learning 24

Figure 9: System states with traditional cost function

Figure 10: System states with the proposed method
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Inverted Pendulum (contd.)

June 25 Safe Reinforcement Learning 25

Figure 11: Control InputFigure 10: System states with the proposed method
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Inverted Pendulum (contd.)

June 25 Safe Reinforcement Learning 26

Figure 12: Actor and critic weights Figure 13: Reward function value at each iteration
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Conclusions and future work

• A safe, adaptive optimal control algorithm, under input saturation and state constraints are studied and applied.

• The input saturation and state constraint enforcement is guaranteed. 

• Use Neural Networks or Gaussian Processes to identify the system dynamics to remove any dependency on the 
apriori model knowledge.        

• Finally, apply the algorithm on a real-time system.

•  We have submitted the extension of this work for publication at the CDC - 2025.

• In the study, we have also compared our approach with the traditional approaches for formally guaranteeing 
constraint enforcement and input saturation.

June 25 Safe Reinforcement Learning 28
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