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Motivation for the research

Application Monitoring NN

 40% motor fail due to bearing.

 Condition-based monitoring: Model-based $ data-driven approach.

 Machine Learning and Deep Learning ( .
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Key Research Question

Enhance Fault
Detection Performance?

Approritate
Neural Network
Architecture

Integration
Meta Information

Transfer Learning

Existing Literatures

 How to design proper neural network architecture K

 Meta Information õ : Rotation L and load 8

 Transfer learning: source $ target.
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Contributions

1- Preprocess Step

2- Architecture

Time to Time-Frequency Features

Meta data normalization

Dual-Branch Architecture

Inverted Residual Block

Uncertainty quantification

3- Assessment
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XJTU-SY, IMS, and CWRU dataset settings
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XJTU-SY, IMS, and CWRU domain data description

XJTU-SY:

 15 run-to-fail vibration datasets.

 Domain data includes bearing load and rotation speed.

{Vrot (rpm), Fload (N)} = {(2100, 12× 103), (2250, 11× 103), (2400, 10× 103)}

IMS:

 Bearing 3 and 4 of set 1, bearing 1 of set 2, bearing 3 of set 3.

 Domain data includes bearing load and rotation speed.

{Vrot (rpm), Fload (N)} = {(2000, 26× 103)}

CWRU:

 Normal and drive end datasets.

 Domain data includes bearing load and rotation speed.

{Vrot (rpm), Fload (N)} = {(1797, 0), (1772, 480), (1750, 958), (1730, 1437)}
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Preprocess run-to-fail dataset

1 Unsupervised learning
with AutoEncoder.

2 Calculate reconstruction
error $ anomaly score.

3 Threshold the anomaly
score $ split the dataset
into normal and
abnormal segments.
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Data and error type distribution

(a) Dataset distribution (b) Error type distribution
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Preprocess vibration data from time domain to time-frequency domain

y Formular:
STFT[m, k] =∑∞

n=−∞ x[n] · w[n−m] · e−j2πkn/N

¢ Time-Frequency Localization:
1D domain $ 2D domain $ what,
when frequency occur.

W Non-Stationary Signal Analysis:
Short-lived fault feature or
modulated harmonics.
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Preprocess min-max scale domain data

(a) Rotation speed (b) Bearing load

. Large number $ activation saturated $ performance "

 Min-max scale: x′ = x−xmin
xmax−xmin

;x′ ∈ [0,1]
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Dual branch architecture diagram
Co

nv
3x

3

M
BC

on
v1

, 3
x3

M
BC

on
v6

, 3
x3

M
BC

on
v6

, 3
x3

M
BC

on
v6

, 3
x3

M
BC

on
v6

, 3
x3

M
BC

on
v6

, 3
x3

M
BC

on
v6

, 3
x3

M
BC

on
v6

, 5
x5

M
BC

on
v6

, 5
x5

M
BC

on
v6

,5
x5

M
BC

on
v6

, 5
x5

M
BC

on
v6

, 5
x5

M
BC

on
v6

, 5
x5

M
BC

on
v6

, 5
x5

M
BC

on
v6

, 5
x5

M
BC

on
v6

, 5
x5

FN
N,

Re
LU

, 1
28

x5

FN
N,

Re
LU

, 5
12

x1
28

FN
N,

Re
LU

, 1
40

8x
51

2

Concat

Main 
Feature

STFT Input
Domain Input

Classifier

softmax

Domain 
Feature

FN
N,

Re
LU

, 5
x3

2

FN
N,

Re
LU

, 3
2x

64

FN
N,

Re
LU

, 6
4x

12
8

N

O

I

B

C

Domain Branch

Main Branch

0.9

0.025

0.025

0.025

0.0250
0
1

479.15
1772

XJTU-SY
IMS

CWRU
Load

Rotation

Tang et al. (UTT) ML for Bearing Fault Detection 10 / 17



Introduction Propose system results Conclusions

Dual branch architecture overview
Main Branch:

 Utilize EfficientNetB0 as backbone.

 Extract importance features from time-frequency STFT dataset:

Fmain = EfficientNetB0(XSTFT);Fmain ∈ Rdmain

Domain Branch:

 A series of fully connected layers.

 Strengthen domain information:

Fdomain = FCNs(Xdomain);Fdomain ∈ Rddomain

Classifier:

 Merge main features and domain features.

 Return probabilities of failure:

P (fault|vibration, domain) = Softmax (FNCs (Fmain,Fdomain)) ≥ P (fault|vibration).
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Mobile Convolutional Block (MBConv) diagram

Depth-Wise

Point-Wise

Expand channel

Residual path

Project back

Figure: Inverted Residual Block- Dung cau ngan
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Mobile Convolutional Block (MBConv) architecture
 Convolutional complexity of a convolutional operation:

O (Conv2d) = k × k × din × h× w × dout

j Inverted bottleneck: Expands channels first before compression.

 Pros: Expressiveness ( ̸= Cons : Computational resource ( .

¥ Depth-wise and point-wise convolution: Single filter each channel $ 1× 1 filter

O (Dwise + Pwise) = k × k × h× w × dout + 1× 1× din × h× w × dout

= k × k × h× w × dout + din × dout × h× w

 Gain in complexity:

O (Dwise + Pwise)

O (Conv2d)
=

k × k × h× w × dout + din × dout × h× w

k × k × din × h× w × dout
=

1

din
+

1

k × k

ø Kernel size k ( $ complexity " .
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Dataset Train/Test Spliting Strategy

ID Model IMS (Source) XJTU-SY (Source) CWRU (Target)

1 Baseline 80% train ¥ ; 20% test ¥ 80% train ¥ ; 20% test ¥ 80% train ¥ ; 20% test ¥

2 Dual-Branch 80% train ¥ ; 20% test ¥ 80% train ¥ ; 20% test ¥ 80% train ¥ ; 20% test ¥

3 Baseline 20% train " ; 20% test ¥ 20% train " ; 20% test ¥ 20% train " ; 20% test ¥

4 Dual-Branch 20% train " ; 20% test ¥ 20% train " ; 20% test ¥ 20% train " ; 20% test ¥

5 Baseline q q 80% train ¥ ; 20% test ¥

6 Dual-Branch q q 80% train ¥ ; 20% test ¥

7 Baseline 20% Ball train " ; 20% test ¥ 20% Ball train " ; 20% test ¥ 20% Ball train " ; 20% test ¥

8 Dual-Branch 20% Ball train " ; 20% test ¥ 20% Ball train " ; 20% test ¥ 20% Ball train " ; 20% test ¥

9 Baseline q q 20% Ball train " ; 20% test test ¥

10 Dual-Branch q q 20% Ball train " ; 20% test test ¥

11 Baseline q q 20% Inner train " ; 20% test test ¥

12 Dual-Branch q q 20% Inner train " ; 20% test test ¥

13 Baseline q q 20% Outer train " ; 20% test ¥

14 Dual-Branch q q 20% Outer train " ; 20% test ¥

 Stratified split into 80-20%.

 Retain only 20% of training data for in some settings.
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Accuracy distributions on target dataset and whole dataset
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Results and discussion
� Dual branch models trained on the full dataset 98.76% ± 0.01

� Baseline model trained on the full dataset 98.07%± 0.01

 mean (accdual) ≥ mean (accbaseline) & std (accdual) ≤ std (accbaseline)

ID Model CWRU (Target) All

3 Baseline 0.65 ± 0.08 0.91 ± 0.01

4 Dual-Branch 0.70 ± 0.05 0.93 ± 0.01

5 Baseline 0.96 ± 0.03 q

6 Dual-Branch 0.98 ± 0.02 q

7 Baseline 0.79 ± 0.02 0.93 ± 0.01

8 Dual-Branch 0.8 ± 0.007 0.95 ± 0.01

ID Model CWRU (Target) All

9 Baseline 0.73 ± 0.02 q

10 Dual-Branch 0.77 ± 0.03 q

11 Baseline 0.90 ± 0.04 q

12 Dual-Branch 0.91 ± 0.06 q

13 Baseline 0.80 ± 0.01 q

14 Dual-Branch 0.80 ± 0.02 q
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Conclusions and Future Work

Conclusions:

1 With current architecture, more data $ higher performance.

2 Dual branch models give better performance and more reliable

Future Work:

1 Explore feature importance.

2 Intergrate physics-informed approach.
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