Meta-Learning for Cross-Domain Bearing Fault Detection

(Quang Hieu TANG, Khac Tuan HUYNH, Malika KHAROUF)¹

¹University of Technology of Troyes, Troyes, France

The 3^{rd} Annual SAGIP Congress

TABLE OF CONTENT

1 Introduction

2 Propose system

3 results

Motivation for the research

- 40% motor fail due to bearing.
- Ondition-based monitoring: Model-based → data-driven approach.
- $igodoldsymbol{\partial}$ Machine Learning and Deep Learning $igodoldsymbol{\Lambda}$.

Key Research Question

😔 How to design proper neural network architecture 🏞

- 🕤 Meta Information 🛢 : Rotation 🔁 and load 💁
- ➔ Transfer learning: source → target.

Introduction	Propose system	results	
00●	0000000000	000	

Contributions

1- Preprocess Step

- O Time to Time-Frequency Features
- Meta data normalization

2- Architecture

- Dual-Branch Architecture
- Inverted Residual Block

3- Assessment

Uncertainty quantification

XJTU-SY, IMS, and CWRU dataset settings

XJTU-SY, IMS, and CWRU domain data description

XJTU-SY:

O 15 run-to-fail vibration datasets.

Domain data includes bearing load and rotation speed.

 $\{V_{\rm rot}~({\rm rpm}),~F_{\rm load}~({\rm N})\} = \{(2100,12\times10^3),~(2250,11\times10^3),~(2400,10\times10^3)\}$

IMS:

Bearing 3 and 4 of set 1, bearing 1 of set 2, bearing 3 of set 3.

Domain data includes bearing load and rotation speed.

{ $V_{\text{rot}} (\text{rpm}), F_{\text{load}} (\text{N})$ } = { $(2000, 26 \times 10^3)$ }

CWRU:

- Normal and drive end datasets.
- Domain data includes bearing load and rotation speed.

 $\{V_{\text{rot}} (\text{rpm}), F_{\text{load}} (N)\} = \{(1797, 0), (1772, 480), (1750, 958), (1730, 1437)\}$

Preprocess run-to-fail dataset

- Unsupervised learning with AutoEncoder.
- 2 Calculate reconstruction error → anomaly score.
- 3 Threshold the anomaly score → split the dataset into normal and abnormal segments.

Tang et al. (UTT

Data and error type distribution

(a) Dataset distribution

Preprocess vibration data from time domain to time-frequency domain

Ħ	Formular:
	STFT[m,k] =
	$\sum_{n=-\infty}^{\infty} x[n] \cdot w[n-m] \cdot e^{-j2\pi kn/N}$
.~	Time-Frequency Localization:

- ✓ Time-Frequency Localization: 1D domain → 2D domain → what, when frequency occur.
- Non-Stationary Signal Analysis: Short-lived fault feature or modulated harmonics.

Propose system 00000●0000	results 000	

Preprocess min-max scale domain data

 $\bigcirc \quad \mathsf{Min-max scale:} \ \mathbf{x}' = \frac{\mathbf{x} - \mathbf{x}_{\min}}{\mathbf{x}_{\max} - \mathbf{x}_{\min}}; \mathbf{x}' \in [\mathbf{0}, \mathbf{1}]$

Tang et al. (UTT

Dual branch architecture diagram

Dual branch architecture overview

Main Branch:

- Utilize EfficientNetB0 as backbone.
- Extract importance features from time-frequency STFT dataset:

 $\mathbf{F}_{\mathrm{main}} = \mathsf{EfficientNetB0}(\mathbf{X}_{\mathrm{STFT}}); \mathbf{F}_{\mathrm{main}} \in \mathbb{R}^{\mathbf{d}_{\mathbf{main}}}$

Domain Branch:

- O A series of fully connected layers.
- Strengthen domain information:

$$\mathbf{F}_{\mathrm{domain}} = \mathsf{FCNs}(\mathbf{X}_{\mathrm{domain}}); \mathbf{F}_{\mathrm{domain}} \in \mathbb{R}^{\mathbf{d}_{\mathbf{domain}}}$$

Classifier:

- Derge main features and domain features.
- Return probabilities of failure:

 $\mathbf{P}(\text{fault}|\text{vibration}, \text{domain}) = \text{Softmax}(\text{FNCs}(\mathbf{F}_{\min}, \mathbf{F}_{\text{domain}})) \geq \mathbf{P}(\text{fault}|\text{vibration}).$

Mobile Convolutional Block (MBConv) architecture

Sonvolutional complexity of a convolutional operation:

 $O(\text{Conv2d}) = k \times k \times d_{in} \times h \times w \times d_{out}$

- **Inverted bottleneck**: Expands channels first before compression.
- **Pros**: Expressiveness $\mathbf{\uparrow} \neq \underline{\mathbf{Cons}}$: Computational resource $\mathbf{\uparrow}$.
- **Opth-wise and point-wise convolution**: Single filter each channel \rightarrow 1 \times 1 filter

 $O(\mathbf{D}_{\text{wise}} + \mathbf{P}_{\text{wise}}) = k \times k \times h \times w \times d_{out} + 1 \times 1 \times d_{in} \times h \times w \times d_{out}$ $= k \times k \times h \times w \times d_{out} + d_{in} \times d_{out} \times h \times w$

Dataset Train/Test Spliting Strategy

ID	Model	IMS (Source)	XJTU-SY (Source)	CWRU (Target)
1	Baseline	80% train 🕑 ; 20% test 🕑	80% train 🕑 ; 20% test 🕑	80% train 🕑 ; 20% test 🕑
2	Dual-Branch	80% train 🕑 ; 20% test 🕑	80% train 🕑 ; 20% test 🥝	80% train 🕑 ; 20% test 🕑
3	Baseline	20% train 🔸 ; 20% test 🥑	20% train 🔸 ; 20% test 🥏	20% train 🔸 ; 20% test 🥑
4	Dual-Branch	20% train 🔸 ; 20% test 🕑	20% train 🔸 ; 20% test 🥝	20% train 🔸 ; 20% test 🥝
5	Baseline	8	8	80% train 🕑 ; 20% test 🕑
6	Dual-Branch	8	8	80% train 🕑 ; 20% test 🕑
7	Baseline	20% Ball train 🔸 ; 20% test 🥝	20% Ball train 🔸 ; 20% test 🕑	20% Ball train 🔸 ; 20% test 🥝
8	Dual-Branch	20% Ball train 🔸 ; 20% test 오	20% Ball train 🔸 ; 20% test 😪	20% Ball train 🔸 ; 20% test 오
9	Baseline	8	8	20% Ball train 🔸 ; 20% test test 🔗
10	Dual-Branch	8	8	20% Ball train 🔸 ; 20% test test 오
11	Baseline	8	8	20% Inner train 🔸 ; 20% test test 오
12	Dual-Branch	8	8	20% Inner train 🔸 ; 20% test test 오
13	Baseline	8	8	20% Outer train 🔸 ; 20% test 🤡
14	Dual-Branch	0	0	20% Outer train 🔸 ; 20% test 오

Stratified split into 80-20%.

Retain only 20% of training data for in some settings.

0.92

0.90

0.88

-

÷.

id

~

m

N

m

10 10

m

id

11 12 11

0.7

0.6

0.5

H 0

Results and discussion

- $\stackrel{\textbf{?}}{\sim}$ Dual branch models trained on the full dataset 98.76% \pm 0.01
- ${f P}$ Baseline model trained on the full dataset 98.07 $\%\pm$ 0.01

ID	Model	CWRU (Target)	All
3	Baseline	0.65 ± 0.08	0.91 ± 0.01
4	Dual-Branch	0.70 ± 0.05	0.93 ± 0.01
5	Baseline	0.96 ± 0.03	8
6	Dual-Branch	0.98 ± 0.02	8
7	Baseline	0.79 ± 0.02	0.93 ± 0.01
8	Dual-Branch	0.8 ± 0.007	0.95 ± 0.01

ID	Model	CWRU (Target)	All
9	Baseline	0.73 ± 0.02	8
10	Dual-Branch	0.77 ± 0.03	8
11	Baseline	0.90 ± 0.04	8
12	Dual-Branch	0.91 ± 0.06	8
13	Baseline	0.80 ± 0.01	8
14	Dual-Branch	0.80 ± 0.02	8

Conclusions and Future Work

<u> </u>			
(onc	1151	n	າເ
COLIC	i u Si		13.

- **1** With current architecture, more data \rightarrow higher performance.
- 2 Dual branch models give better performance and more reliable

Future Work:

- 1 Explore feature importance.
- **2** Intergrate physics-informed approach.

THANK YOU FOR YOUR ATTENTION!

References

- Center for Intelligent Maintenance Systems, University of Cincinnati (2007). *IMS Bearing Data*.
- Hakim, Mohammed et al. (2023). "A systematic review of rolling bearing fault diagnoses based on deep learning and transfer learning: Taxonomy, overview, application, open challenges, weaknesses and recommendations". In: *Ain Shams Engineering Journal* 14.4, p. 101945.
- Neupane, Dhiraj and Jongwon Seok (2020). "Bearing fault detection and diagnosis using case western reserve university dataset with deep learning approaches: A review". In: *leee Access* 8, pp. 93155–93178.
- Sandler, Mark et al. (2018). "Mobilenetv2: Inverted residuals and linear bottlenecks". In: *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 4510–4520.

References (cont.)

- Tan, Mingxing and Quoc Le (2019). "Efficientnet: Rethinking model scaling for convolutional neural networks". In: International conference on machine learning. PMLR, pp. 6105–6114.
- Wang, Biao et al. (2018). "A hybrid prognostics approach for estimating remaining useful life of rolling element bearings". In: IEEE Transactions on Reliability 69.1, pp. 401–412.