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Introduction

Objectives

Using a stochastic approach for prognostic in order to compath
the exciting non-stochastic methods applied on the 200§rterxstic
Health Management data.

Construction of alegradation indicatdrom the sensors
measurements (2008 Prognostic Health Management (PHM)
Challenge data).

Using astochastic process model the deterioration of components
(Remaining Useful Life estimation).
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Our point of view for prognostic

Prognostic with probabilistic modeling
Data: random variables associated to failure times
Many realization of the same law
Statistical inference
Quantities of interest: probability of failure
= Independent on time and on actual system state
= Not so good for prognostic
Prognostic with stochastic modeling (stochastic process)

One scalar indicator (or a vector of reasonable size) that
depends on the time and that makes sense with degradation
phenomena

Many realizations of the same indicator
Statistical inference

Calculation of probabilistic quantities of interest: tineereach
a failure state, law of this time.

= Dependent on time and on actual system state
= Seems to be relevant for prognostic
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Experimental data

3 Operational variables Measurements of 21 sensors
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* Two sub-data set : the training data set and the testing data s
® The training data set is used to build the prediction model
® The testing data set is used to estimate the RUL for eacimgestiit.
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Experimental data
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Degradation indicator can not be directly deduced from theghsor
paths

All measurements are divided into 6 clusters corresponidiitg
operational modes

Selection of 7 sensors

—n.5/33



Degradation indicator (1)

= STEP 1: identification of a failure space and a failure placeefich
mode

Select the measurements of 7 sensors only at the failure time
Group the failure measurements according to their moded6ps)

For each group:

Create a projection space of dimension 2 with PCA (called
failure space)

Calculate the barycenter of the projected failure measenésn
In this space to create a failure place.

Result :
6 plans of PCAP;, P,, ..., P;, one for each mode.
6 failure placed.1, L2, ..., L6, one for each mode.
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Degradation indicator (2)

= Contribution of principal components for each mode

Mode 1| Mode 2| Mode 3| Mode 4| Mode 5| Mode 6
PC1l| 60.85 72.64 | 61.45 | 54.41 | 58.95 | 79.65
PC2| 38.04 26.75 | 37.85 | 4455 | 40.07 | 19.11
PC3| 0.66 0.28 0.34 0.56 0.41 0.77
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Degradation indicator (3)

= STEP 2: create a degradation indicator at each time for eaipanent

Degradation indicator construction step-by-step for each component
Mode ‘

Degradation indicator of component obtained in the operational mode 5 on the interval
[1,T1] by representing sensors measurements with PCA in the failure space P5

6 —

5 , Indicator of component obtained in the operational mode 4 on the interval
! [T1,T2] by representing sensors measurements with PCA in P4
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Degradation indicator (4)

N number of units in modé
P, = (a, b) the barycenter of the failure spafg, k =1, ....6

1

spacep;,

PF = (a;,b;),i =1, ..., N} is thei*" failure place in the projection

P} = (aij, bi;) is the measure of the 7 selected sensors at fifoe
component in the projection space;

The dispersion of the failure places in mddat time; (notedk(;)) is

defined by:

1

Dispery ;) = \

DrU) —

¥

Ny — 1

N (5)

> ((ai —a)? + (b = b)?)

1=1

\/(afj(j) _a)? + (bfj(j) _ )

Dispery
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Degradation indicator (5)

= One component

1.
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Degradation indicator (6)

= All the components

Tendance de l'indicateur de dégradation pour tous les composants
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Non-linear and decreasing

At the beginning cycles, the indicator value has an impadrtan
dispersion and at the end cycles, the failure times, it témdsro
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First degradation model - Definition

= Df,g.j) = degradation indicator of unitat cyclej.

One proces<; for all DFY) je. one unigue process:

for all the modes, ’

for all the units.
The incrementa\d; ; = D; j+1 — D, ;,i =1, ...,218 follow a
gaussian distribution (n((j + 1)* — (5)®), o?(( + 1)* — (j)%))
This law depends only on timg

= A path ngﬁ; 4 =2,...,n; Is one realization of this Wiener process and
we have 218 realizations of the same stochastic proegdsaw for the

firstvalueD; ;: D, 1;¢=1,...,218 are the realizations of the same Weibull
law with 3 parameters.
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First degradation model - Parameter estimation

Wiener parameterg,, a, o) are estimated by maximizing the
log-likelihood function:

Tifailure 1

218
=3 109 fra( B ;)
1=1

g=1

Weibull parameters are estimated independently also by
log-likelihood function.
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RUL estimation - Testing data set

Dfi(,jj): degradation indicator of the unitat the last observed cycte

(n,0,a) are used to simulate the paths of Wiener process from the
last cycler of uniti’.

Xt

< >

5 >
RUL = (Tpmin + Tpmazx)/2 —t
< RULmaxg = maz(h|X¢rn > D)

: : - >
[ Tp min Tp max
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RUL estimation - Testing data set

RUL for each simulation path is defined as:

(T¢ min + TF maz)

simulated — 2

— T

RULY

T¢ min = inf{j > r, D, (J)<L}

1 k(j+s)
T¢ max = inf{j > r,Vs > 0, D, s <L}

RULY,,. . . of testing unit’ is defined as the empirical mean of
n = 10000 simulated Wiener process paths.
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Performance assessment of the first model

Applying the stochastic degradation model to all 218 unithe
testing data set, we obtained an estimated RULSs set

RULY fori/ =1,...,218.

estimated?

Penalty function criterion provided by 2008 PHM Challenge, the
penalty score for each testing unit is given by the followioignula:

—d;/ /13 _ 1 d. <0
&
S = = =1,...,218
{ €d’i//10—1, diyr >0 '

whered;, = RULY ,. . . — RUL! . . and the total score
g — 2218

Root mean squared erroRM SE = \/ S22 (di)?
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Performance assessment of the first model

Lifetime distribution model (Weibull distribution on thaifure
times) ;.5 = 9870
Total score of the different models on our degradation iaighic
pEG).
1,7
Similarity-based prognostic approach proposed by Wanigan t
2008 PHM conference$ = 6690

Wiener process modelS = 5520 andRM SE = 438

The best results in the 2008 PHM Challenge:
Similarity-based prognostic model of Wang = 5636
Non-probabilistic models based on the neural networks ef Pe

(2008) and Heimes (2008).
RMSE=519.8 and RMSE®$&4.
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Conclusion for the first degradation model

Good performance with reasonable calculation time on basic
computer

Do not get complete satisfaction because:
no conditional law for the RUL,
no monotone degradation.

= Further work: there is a noise with the degradation indicttat must
be “filtered” for better modeling and probabilistic calciiban
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Second degradation model (1)

Note:
Y® = (DY, ..., D"y : the observation vector for unit i.

X® = (xFV, .., X ")) : the non-observable actual random
states of unit .
Our deterioration model:
k(7) _ (k(j) k()
Di,j = f(Xz',j €44 )
k(7) _ (k@) k(7)
D7 =X 1€

vy — x @ 4 )

where :
e,’f’(f),j = 1,...,n; : the iIndependent gaussian random variables
with standard deviation§i) and mean equals to zero for unit .

—n. 19/33



Second degradation model (2)

Each component of the observations ve&dt, i = 1, ..., 218 is
replaced by:

v(EG) _ pk) k()
[2¥)

i1 ij o J =1 un;

The pathg”(*) are non-monotone increasing, with starting point at
zero and with random failure threshold.

Non-homogeneous Gamma processXﬁéj)

One unique process for all the units and all the modés:

One unigue law for the nois€: A/(0, o)

=Y, X' ¢, fori =1, ...,218 are the realizations of the same stochastic
process.

= There will be noted’, X, ¢ in the following.
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Second degradation model (3)

= Definition of non-homogeneous Gamma process
The initial stateX, = 0.

(X;);>0 IS supposed to be monotone, increasing.

The incrementsx, = X; — X;_;,j = 1,2,...,n are independent
and have the Gamma density:

[Y(ts)—v(ti—1)
L(v(t;) —v(tj-1))

Jox, (0lv(t;) —v(tj-1), B) = o)== ) (8)

[(u) = [~ 2z ‘e *dz : Gamma function for > 0.

I4(0)=1for§ € A, I4(5) =0foré ¢ A.

Shape function(t) = at® and scale parametgr
where:I'(v) = [_ 2"~ ‘e *dz is the gamma function, .

= 4 parameters to be optimised; 3, b, 0.
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Failure threshold

—n. 22/33



Joint distribution of system state

For estimating the RUL, the joint conditional densityXffigured
out the observation vectdr is calculated as follows:

n 2
— b b . _g (wj,Yj)
pxyy (1, o ) = Ko P | [ (g—ay0) 507 e 2 |gr(ay, V7))
j=1

whereg/(.,y) = 2252 andK, is the coefficient defined as follows:

1 B T att—tt_ -1 (_ 9°(%5,Y]
e :/.../e Pn H(xj—a:j_l) (tj—ti—1)—1g(_ (2J2 J))\g/(xj,Yj)|dx1...da:n
1 ol o

It’s difficult to calculate the coefficienk; =.
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Remaining Useful Lifetime estimation

Remaining Useful Lifetime (RUL) estimation is based on thiéufe
probability at the next inspection given thebservationyi, ....Y,,.

The distribution function of:U L(¢,,) figured out the observations is
defined as follows:

Frure,)(h) = P(Xe,+n>LIX, > L, Y1,....Y,)

Fo(t,+nyp—w) g - the reliability function of Gamma process

with shape functiom((¢,, + h)® — t?) and scale parametgt
1x,/vi,..v, - the conditional density ok,,.

fr(1) : the density function of the failure threshold.
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Methodology for RUL estimation
With the training set#, 3, b, é

Propose an estimator &tz 1, (k) usingé, 3, b, ¢ and the testing
data set to approximajeyx, /v, ...y,

= Gibbs algorithm (MCMC)

With the training set, for each unit:
Simulate a Markov Chain whose stationnary law s/y-.
Each stateZ; of the Markov Chain is an approximation &f; .
Use the outputs of the algorithm to create a data set thatoll
UX/)Y -
Estimate the parametetis 5, b, e with SEM algorithm.

With the testing set, for each unit:
Simulate a Markov Chain whose stationary law:ig, /v, ...y, -
One state of the Markov Chaitx,, .
Use the outputs of the algorithm to approximaig by 7,

Use the estimated parameters @ngdto approximate
Frur,)(h).
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Gibbs algorithm (1)

Fory =1,

b
MX/Y(xl/fC% 7£Un) — K2,15L’1( 1)

For2 <j;<n-—1,

b_ b
//LX/Y(:CJ'/Q:l,...,xj_17xj+17..,’xn> :K2,j(aj]_x]—1> (t tj 1) 1

by 1 (_ Y
(:Ej—l—l _:Ej)a(tj_H t5) 16( 202 )‘g/(ajﬁ )|1 (xj_1<xj<xjy1)

Forj = n,

b b
Ux Y (T )T ooy Te1) = Ko pe P (2, — g )@ Un~Enn) =1

_ 92(3377, Yn)

(& ‘g/(ajna n)‘l(l‘n—1<wn)

whereK, ; are tractable constants dependenton..,z;_1,x;11, ..., Tn
andyi, ..., yn
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Gibbs algorithm (2)

= Arandom variable fromux ;v (21, ..., 7,) IS generated as follows:
Given a values setz; (k), ..., zn(k))
The next generated values $et(k + 1), z2(k+1),...,2,(k 4+ 1)) IS
defined as follows:
z1(k 4+ 1) Is generated from
pz, (k+ 1)=px v (21]22(k), ..., 2n(K)).
z;i(k + 1) is generated from
pz; (k+1)=pux v (2521 (k + 1), ..., zj—1(k + 1), 2j41(k), 2 (k)),
17 =2,....,n— 1.
zn (k) 1S generated from
pz, (k+1)=ux ;v (znlz1(k +1), ..., 2n_1(k + 1)).
= Algorithm stops akt = Qo when the stationary state of the
Markov chain is got.
= Each observation vectaf(®) gives us an approximation vector
7@ of X0,
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Real state estimation
= Approximation of the non-observable sta¥e:

Qo : the number of sequences to get the convergence state.

1 Q
Zj = ézzj(Qo +q)
qg=1

(1)

Q : the number of sequences to give sufficient precision to the
empirical distribution of interest.

Outputs of Gibbs

Failure state

Cvcle
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Model parameters estimation

Parameters of model are estimated based on the outputsiod Gib
algorithm and by using the Stochastic EM (SEM) method.

The observations saf ) = (V" .y 5")) i =1, .., 218 with

component independently observed at inspection times
0<ty <..<tp,.

Maximizing as follows by SEM method to estimate the paransete

of model:

218 mn;

k(7 k(7—1
L(a,b, B,0) = > [(@l((t;)’ —(tj—1)") = Din(X [V~ x I D)
i=1 j=1
2/vk() k()
k(i k(i—1 Q(Xz',' aYz',') k(i k(i

B X FID) ST (g (X, V) ) ~n(ov/2m)

+a((ty)" = (tj=1)") n(B) — In(T(a((t;)" — (t;-1)")))]
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RUL estimation

The conditional distributiott'z¢; 7,y (h):

FRUL(tn)(h) = P(Xt +h > L|X > L,Yq, ..., Y)

can be estimated by Gibbs algorithm as follows:
Qo+Q
Frupe,(h Z / a((tntnyp—ioy, 30— 2n(@)-fL(l)dl

q Qo—+1
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N
3

Degradation

Failure threshold

Approximated trajectory of X

(t)

Observation Veétor Y

Cycle tn 17,
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Performance assessment of the second model
Estimation quality: close to Wiener process model

Calculation time (PC Dell Core 15-2500 3.3GHz, 4Go RAM, et
Matlab 2010)

Wiener process
For parameter estimation with the training data set: 4h
For the RUL estimation of one unit on the testing data set:
11 min.

Gamma process with noise
For parameter estimation with the training data set: 3 days
For the RUL estimation of one unit on the testing data set:
30 min.
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Perspectives for the second model

Size of the observation window

Performance of maintenance policies based on:

Frure,)(h) = P(Xe,+n>LIX, > L, Y1,...Y,)
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