FAULT TEMPLATE EXTRACTION FROM INDUSTRIAL ALARM FLOODS

Sylvie Charbonnier, Nabil Bouchair, Philippe Gayet

Grenoble | images | parole | signal | automatique | laboratoire

FRI

Industrial control systems based on SCADA architecture

Diagnostic may be complex

To assist the operator confronted to an alarm flood

Learn information on the alarm generation process (off line)

- Which alarm is relevant?
- Which alarms are specific to a given fault?
- Is a fault diagnosable from the alarm list?
- Is there a specific pattern in the alarm flood ?

Decision support in operation (on line)

• Suggest possible faults

psa-lab

Fault template: learnt from a set of alarm lists recorded during the occurrence of the fault

- **sequential :** The alarm order of appearence is used
- vectorial

Alarms are weighted according to their relevance to the fault

Outline

- 1. Methods
 - A. Template extraction
 - sequential template
 - vectorial template
 - weighted sequential template
 - B. Knowledge extraction and decision support

2. CERN LHC process

3. Results

Learning set

N = full number of alarms triggered by the control system

Sequential fault template

N = full number of alarms triggered by the control system

of size N

Sequential fault template : the minimal sequence formed of alarms present in the same order on more than half the lists generated by fault n°q

Template extraction using the Needleman and Wunsch algorithm

The **Needleman and Wunsch** algorithm (1970)

- Used in bio-informatic to compare sequences of genes
- Use dynamic programming

Global optimal alignment of 2 symbolic sequences – Insert gaps to increase similarity

Template extraction : multiple alignment

k sequences to align \rightarrow ascendent hierarchical clustering

Outline

1. Method

- A. Template extraction
 - sequential template
 - vectorial template
 - weighted sequential template
- B. Knowledge extraction and decision support

2. CERN LHC process

3. Results

Vectorial alarm list representation

Weight w_{j}^{i} : relevance of alarm *j* to fault *i* compared to faults contained in S^{i}

wⁱ, depends on the faults contained in Sⁱ

Example : alarm 1

F1 F1	F1	F1	F1	F2	F2	F2	F2	F2	F3	F3	F3	F3	F3
1 0	1	1	0	1	1	1	1	1	0	0	0	0	0

F1 compared with F2 and F3 :

$$p_1^1 = 1$$
 $\alpha_1^1 = \frac{3}{5}$ $\beta_1^1 = \frac{5}{10}$ $\omega_1^1 = (2 * \frac{3}{5} - 1) * (1 - \frac{5}{10}) = 0.2 * 0.5 = 0.1$

F1 compared with F2 :

$$p_1^1 = 1$$
 $\alpha_1^1 = \frac{3}{5}$ $\beta_1^1 = 1$ $\omega_1^1 = (2 * \frac{3}{5} - 1) * (1 - 1) = 0$

F2 compared with F3 :

$$p_1^2 = 1$$
 $\alpha_1^2 = 1$ $\beta_1^2 = 0$ $\omega_1^2 = (2*1-1)*(1-0) = 1$

Outline

1. Method

- A. Template extraction
 - sequential template
 - vectorial template
 - weighted sequential template
- B. Knowledge extraction and decision support

2. CERN LHC process

3. Results

Weighted sequential template : Tⁱ

Outline

1. Method

- A. Template extraction
 - sequential template
 - vectorial template
 - weighted sequential template
- B. Knowledge extraction and decision support

2. CERN LHC process

3. Results

Weigth matrix representation

Weigth matrix representation

W^{*i*} with *S*^{*i*} = {1,...,*f*}*V*

Knowledge extraction : fault diagnosability

Definitions :

- An alarm *j* is specific to a fault *i* compared to a subset of faults S^{*i*} if $w_j^i = 1$
- if a fault *i* has at least one specific alarm, it can be distinguished from the faults contained in **S**^{*i*}, from its vectorial representation

Discriminability between pairs of faults (*i*,*k*)

$$W^{i} = \begin{bmatrix} w_{1}^{i} \\ w_{2}^{i} \\ w_{N}^{i} \end{bmatrix}$$
 With $S^{i} = \{k\}$
$$j \qquad 1$$
 Alar fault

Alarm *j* is specific to fault *i* compared to fault *k*

Alarm *j* can distinguish fault *i* from fault *k*

For k=1 to f except i,

Calculate W^i using $S^i = \{k\}$ If $\max_{j=1:N}(w_j^i) = 1$ fault i can be distinguished from fault k else it can be confused with fault k : $k \in \overline{F_i}$

End

 $\overline{F_i} = \{ \}$ Fault i is diagnosable from its alarm list

Decision support in operation : similarity between unknown alarm sequence S and template Tⁱ

Unweighted similarity between S and template Tⁱ (length q)

Decision support in operation : information display

Outline

1. Method

- A. Template extraction
 - sequential template
 - vectorial template
 - weighted sequential template
- B. Knowledge extraction and decision support

2. CERN LHC process

3. Results

Large Hadron Collider in CERN

Large Hadron Collider systems

LHC :

- the biggest particle accelerator in the world
- formed of many different systems
- all controlled using the same SCADA architecture

The gas system : supply the detection chambers with a precise mixture of pure gases

CERN LHC process : the gaz system

Accurate simulator of the gas system

Outline

1. Method

- A. Template extraction
 - sequential template
 - vectorial template
 - weighted sequential template
- B. Knowledge extraction and decision support

- 2. CERN LHC process
- 3. Results

Alarm lists length – Template length

Similarity between sequential fault template : unweighted similarity

Weigth analysis w_j^i with $S^i = 13$ faults except *i*

Weighted sequential fault template

ົລ

Fault diagnosability (vectorial template)

Fault 8/ Fault 11

gipsa

Fault 5/ Fault 6

WYW

D

Leak in Mixer/ leak in Exhaust \rightarrow Lack of instrumentation

Similarity between sequential fault templates : weighted similarity $\int_{a}^{b} e^{-a^{i}}$

Fault templates for i =1 to 13

Decision support in operation \rightarrow diagnose unknown sequence S

\$

I *⁷*

Classification accuracy using the first nearest neighboor

For each of the 78 sequences

Classification : Assign unknown sequence S to the fault whose template is the most similar (weighted similarity)

Validation : leave one out

- remove S from the data set

- extract fault templates Ti without S

Results :

Vectorial representation ; Hamming distance : **54/78** Sequential representation ; weighted similarity : Full template, full alarm sequence : **75/78**

Impact of the template length

5

Impact of the template length on the classification accuracy

Impact of sequence length

When make the decision? Is it necessary to wait for the end of the alarm flood ?

S is reduced to its L first alarms \rightarrow the decision is made after L alarms

Impact of sequence length

Conclusion

- Off line : A strategy to learn information from a fault data set → valuable feed-back information on the alarm generation process
 - Irrelevant alarms
 - Fault diagnosability from its alarm list

 \rightarrow Lack of instrumentation

- Typical fault pattern : guideline for non expert operators
- On line : A strategy to diagnose a fault on the occurrence of an alarm flood, based on similarity
- > No model required but a need for data
- Both the presence and the absence of alarms are considered