Introduction 000	Plan	Emetteur 00000	Observateurs 00000000000000	Cryptage 0000000	Multimodeles 0000000	000
inpl Ency					CIR	

Estimation d'état non linéaire : application à la synchronisation et aux cryptosystèmes chaotiques

Estelle Cherrier, José Ragot, Mohamed Boutayeb

CRAN UMR 7039, Institut National Polytechnique de Lorraine LSIIT UMR 7005, Université Louis Pasteur, Strasbourg

Réunion du Groupe de Travail S3 Sûreté-Surveillance-Supervision 23 janvier 2007

э

・ロト ・ 一下・ ・ ヨト ・ ヨト

Introduction	Plan	Emetteur	Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Systèmes ch	naotiques					

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Propriétés

- Système déterministe
- Caractérisé par une extrême sensibilité aux conditions initiales
- Possède un comportement asymptotique apériodique

Introduction	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	000000000000	0000000	0000000	000
Systèmes c	haotiqu	ies				

- Système déterministe
- Caractérisé par une extrême sensibilité aux conditions initiales
- Possède un comportement asymptotique apériodique

Système de Lorenz (1963)

 $\dot{x}_1 = -\sigma x_1 + \sigma x_2$ $\dot{x}_2 = \gamma x_1 - x_2 - x_1 x_3$ $\dot{x}_3 = x_1 x_2 - \beta x_3$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Introduction	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	000000000000	0000000	0000000	000
Systèmes c	haotiqu	ies				

- Système déterministe
- Caractérisé par une extrême sensibilité aux conditions initiales
- Possède un comportement asymptotique apériodique

Système de Rössler (1976)

 $\dot{x}_1 = -x_2 - x_3$ $\dot{x}_2 = x_1 + ax_2 + 0,01x_1 \ln(x_3)$ $\dot{x}_3 = c + x_3(x_1 - b)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Systèmes c	haotiqu	es				

- Système déterministe
- Caractérisé par une extrême sensibilité aux conditions initiales
- Possède un comportement asymptotique apériodique

Circuit de Chua (1980)

$$\dot{x}_1 = \frac{1}{C_1} \left(G(x_2 - x_1) - f(x_1) \right)$$
$$\dot{x}_2 = \frac{1}{C_2} \left(G(x_1 - x_2) + x_3 \right)$$
$$\dot{x}_3 = -\frac{1}{L} \left(x_2 + R_0 x_3 \right)$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Introduction	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Systèmes o	chaotiqu	ies				

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Propriétés

- Système déterministe
- Caractérisé par une extrême sensibilité aux conditions initiales
- Possède un comportement asymptotique apériodique

Signal chaotique

- semble aléatoire
- MAIS parfaitement déterministe

Introduction	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Systèmes	chaotiqu	ies				

- Système déterministe
- Caractérisé par une extrême sensibilité aux conditions initiales
- Possède un comportement asymptotique apériodique

Signal chaotique

- semble aléatoire
- MAIS parfaitement déterministe

Conséquence : il est possible de le reproduire (mêmes conditions initiales)

Introduction	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Systèmes	chaotiqu	ies				

- Système déterministe
- Caractérisé par une extrême sensibilité aux conditions initiales
- Possède un comportement asymptotique apériodique

Signal chaotique

- semble aléatoire
- MAIS parfaitement déterministe

Conséquence : il est possible de le reproduire (mêmes conditions initiales) ⇒ intérêt de la synchronisation : le récepteur n'a pas besoin de connaître les CI

Introduction	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Synchron	isation					

- découverte par Christiaan Huygens (1629-1695)
- caractérise les systèmes périodiques
- notion de système forcé

 \neq chaos = phénomène incontrôlable

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Introduction	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Synchron	isation					

- découverte par Christiaan Huygens (1629-1695)
- caractérise les systèmes périodiques
- notion de système forcé

 \neq chaos = phénomène incontrôlable

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Synchronisation du chaos

Plusieurs étapes

- 1983 : Yamada et Fujisaka
- 1990 : Pecora et Carroll
- 1997 : approche utilisant les observateurs

Introduction	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Synchroni	sation					

- découverte par Christiaan Huygens (1629-1695)
- caractérise les systèmes périodiques
- notion de système forcé

 \neq chaos = phénomène incontrôlable

Synchronisation du chaos

Plusieurs étapes

- 1983 : Yamada et Fujisaka
- 1990 : Pecora et Carroll
- 1997 : approche utilisant les observateurs

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Synchroni	sation					

- découverte par Christiaan Huygens (1629-1695)
- caractérise les systèmes périodiques
- notion de système forcé

\neq chaos = phénomène incontrôlable

Synchronisation du chaos Plusieurs étapes • 1983 : Yamada et Fujisaka • 1990 : Pecora et Carroll • 1997 : approche utilisant les observateurs

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

		00000	000000000000000000000000000000000000000	0000000	0000000	000
Application		antion d'un	cruptocuctàmo	chaotique	000000	000
Introduction	Plan	Emetteur	Observateurs	Cryptage 0000000	Multimodèles	Conclusion

◆□ > ◆□ > ◆三 > ◆三 > ○ = ○ ○ ○ ○

Introduction	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Application	: concept	tion d'un cr	yptosystème (chaotique		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

	rian	00000	000000000000000000000000000000000000000	0000000	0000000	000
Applicatio	n : conc	eption d'un d	cryptosystème	chaotique		

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ < ⊙ < ⊙

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Plan de la	a présenta	ation				

Choix de l'émetteur chaotique

- Etude du chaos
- Détail de l'émetteur

2 Conception du récepteur : synthèse d'observateurs

- Observateur d'ordre plein
- Observateur d'ordre réduit

Cryptage/décryptage

- Exemples de cryptosystèmes chaotiques
- Conception d'un cryptosystème chaotique
- Sécurité de la synchronisation : multimodèles chaotiques
 - Exemples
 - Synchronisation des multimodèles chaotiques

5 Conclusion et perspectives

	Plan	Emetteur	Observateurs	Cryptage	Multimodèles	Conclusion
Plan de la	présent	ation				

Choix de l'émetteur chaotique

- Etude du chaos
- Détail de l'émetteur
- 2 Conception du récepteur : synthèse d'observateurs
 - Observateur d'ordre plein
 - Observateur d'ordre réduit

3 Cryptage/décryptage

- Exemples de cryptosystèmes chaotiques
- Conception d'un cryptosystème chaotique

Sécurité de la synchronisation : multimodèles chaotiques

- Exemples
- Synchronisation des multimodèles chaotiques

5 Conclusion et perspectives

	Plan	Emetteur	Observateurs	Cryptage	Multimodèles	Conclusion
		00000				
Choix de	l'émetteu	ır chaotique				

Objectifs

 l'émetteur doit générer un signal chaotique dans lequel l'information sera noyée

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• le signal porteur chaotique doit être le plus complexe possible

	Plan	Emetteur	Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Choix de l'	émette	ur chaotique				

Objectifs

- l'émetteur doit générer un signal chaotique dans lequel l'information sera noyée
- le signal porteur chaotique doit être le plus complexe possible

Système chaotique à retard

$$\begin{aligned} \dot{x}_1(t) &= -\alpha x_1(t) + \alpha x_2(t) - \alpha \delta \tanh(x_1(t)) \\ \dot{x}_2(t) &= x_1(t) - x_2(t) + x_3(t) \\ \dot{x}_3(t) &= -\beta x_2(t) - \gamma x_3(t) + \varepsilon \sin(\sigma x_1(t-\tau)) \end{aligned}$$

	Plan	Emetteur	Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Route ver	rs le chao)S				

	Plan	Emetteur	Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Diagramm	e de bit	furcations				

ヘロン ヘロン ヘビン ヘビン

æ

	Plan	Emetteur	Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000

Structure de l'émetteur

Modèle dynamique du système étudié

$$\begin{aligned} \dot{x}_1(t) &= -\alpha x_1(t) + \alpha x_2(t) - \alpha \delta \tanh(x_1(t)) \\ \dot{x}_2(t) &= x_1(t) - x_2(t) + x_3(t) \\ \dot{x}_3(t) &= -\beta x_2(t) - \gamma x_3(t) + \varepsilon \sin(\sigma x_{1\tau}(t)(t)) \end{aligned}$$

$$\dot{x}(t) = Ax(t) + F(x(t)) + H(x_{\tau}(t))$$

$$y(t) = Cx(t)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

	Plan	Emetteur	Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000

Structure de l'émetteur

Modèle dynamique du système étudié

y(t) = Cx(t)

$$\begin{aligned} \dot{x}_1(t) &= -\alpha x_1(t) + \alpha x_2(t) - \alpha \delta \tanh(x_1(t)) \\ \dot{x}_2(t) &= x_1(t) - x_2(t) + x_3(t) \\ \dot{x}_3(t) &= -\beta x_2(t) - \gamma x_3(t) + \varepsilon \sin(\sigma x_{1\tau}(t)(t)) \\ \downarrow \\ \dot{x}(t) &= \mathbf{A} x(t) + F(x(t)) + \mathbf{H}(x_{\tau}(t)) \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Notations

$$A = \begin{pmatrix} -\alpha & \alpha & 0\\ 1 & -1 & 1\\ 0 & -\beta & -\gamma \end{pmatrix}$$

$$F(x(t)) = \begin{pmatrix} -\alpha\delta \tanh(x_1(t))\\ 0\\ 0\\ 0 \end{pmatrix}$$

$$H(x_{\tau}(t)) = \begin{pmatrix} 0\\ 0\\ \epsilon\sin(\sigma x_{1\tau}(t)) \end{pmatrix}$$

	Plan	Emetteur	Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000

Structure de l'émetteur

Modèle dynamique du système étudié

$$\dot{x}_1(t) = -\alpha x_1(t) + \alpha x_2(t) - \alpha \delta \tanh(x_1(t))$$
$$\dot{x}_2(t) = x_1(t) - x_2(t) + x_3(t)$$
$$\dot{x}_3(t) = -\beta x_2(t) - \gamma x_3(t) + \varepsilon \sin(\sigma x_{1\tau}(t)(t))$$
$$\downarrow$$

$$\dot{x}(t) = Ax(t) + F(x(t)) + H(x_{\tau}(t))$$

$$y(t) = Cx(t)$$

Notations

$$A = \begin{pmatrix} -\alpha & \alpha & 0\\ 1 & -1 & 1\\ 0 & -\beta & -\gamma \end{pmatrix}$$
$$F(x(t)) = \begin{pmatrix} -\alpha\delta \tanh(x_1(t))\\ 0\\ 0 \end{pmatrix}$$
$$H(x_{\tau}(t)) = \begin{pmatrix} 0\\ 0\\ \varepsilon \sin(\sigma x_{1\tau}(t)) \end{pmatrix}$$

Condition de Lipschitz

 $\begin{array}{l} F \text{ et } H \text{ sont Lipschitziennes (de constantes } k_F \\ \text{et } k_H \text{)} : \\ \forall (x, x') \in (\mathbb{R}^3)^2, \quad \|F(x) - F(x')\| \leqslant k_F \|x - x'\| \\ \quad \|H(x) - H(x')\| \leqslant k_H \|x - x'\| \end{array}$

(日) (日) (日) (日) (日) (日) (日) (日)

		Plan	Emetteur	Observateurs	Cryptage	Multimodèles	Conclusion
000			00000	0000000000000	0000000	0000000	000
	~		×				

Transformation du système

Modèle équivalent

• on choisit la matrice
$$C=\left(egin{array}{cc} 1 & \zeta & 0 \end{array}
ight) \Rightarrow x_1(t)=y(t)-\zeta x_2(t)$$

$$\begin{cases} \dot{x}(t) = \tilde{A}x(t) + \tilde{B}y(t) + \tilde{F}(x(t), y(t)) + \tilde{H}(x_{\tau}(t), y_{\tau}(t)) \\ y(t) = Cx(t) \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

	Plan	Emetteur	Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	000000	000

Transformation du système

Modèle équivalent

• on choisit la matrice
$$C=\left(egin{array}{cc} 1 & \zeta & 0 \end{array}
ight) \Rightarrow x_1(t)=y(t)-\zeta x_2(t)$$

$$\begin{cases} \dot{x}(t) = \tilde{A}x(t) + \tilde{B}y(t) + \tilde{F}(x(t), y(t)) + \tilde{H}(x_{\tau}(t), y_{\tau}(t)) \\ y(t) = Cx(t) \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Notations

$$\begin{split} \tilde{A} &= \begin{pmatrix} 0 & \alpha(1+\zeta) & 0 \\ 0 & -(1+\zeta) & 1 \\ 0 & -\beta & -\gamma \end{pmatrix} \\ \tilde{B} &= \begin{pmatrix} -\alpha \\ 1 \\ 0 \end{pmatrix} \\ \tilde{F}(x(t), y(t)) &= \tilde{F} &= \begin{pmatrix} \alpha\delta \tanh(y(t) - \zeta x_2(t)) \\ 0 \\ 0 \end{pmatrix} \\ \tilde{H}(x_{\tau}(t), y_{\tau}(t)) &= \tilde{H} &= \begin{pmatrix} 0 \\ 0 \\ \varepsilon \sin(\sigma(y_{\tau}(t) - \zeta x_{2\tau}(t))) \end{pmatrix} \end{split}$$

000 000000000000000000 0000000 0000000 000		Plan	Emetteur	Observateurs	Cryptage	Multimodèles	Conclusion
	000		00000	0000000000000	0000000	0000000	000

Transformation du système

Modèle équivalent

• on choisit la matrice
$$C=\left(egin{array}{cc} 1 & \zeta & 0 \end{array}
ight) \Rightarrow x_1(t)=y(t)-\zeta x_2(t)$$

$$\left\{ \begin{array}{l} \dot{x}(t) = \tilde{A}x(t) + \tilde{B}y(t) + \tilde{F}(x(t), y(t)) + \tilde{H}(x_{\tau}(t), y_{\tau}(t)) \\ y(t) = Cx(t) \end{array} \right.$$

Notations

$$\begin{split} \tilde{A} &= \begin{pmatrix} 0 & \alpha(1+\zeta) & 0 \\ 0 & -(1+\zeta) & 1 \\ 0 & -\beta & -\gamma \end{pmatrix} \\ \tilde{B} &= \begin{pmatrix} -\alpha \\ 1 \\ 0 \end{pmatrix} \\ \tilde{F}(x(t), y(t)) &= \tilde{F} &= \begin{pmatrix} \alpha\delta \tanh(y(t) - \zeta x_2(t)) \\ 0 \\ 0 \end{pmatrix} \\ \tilde{H}(x_{\tau}(t), y_{\tau}(t)) &= \tilde{H} &= \begin{pmatrix} 0 \\ 0 \\ \varepsilon \sin\left(\sigma(y_{\tau}(t) - \zeta x_{2\tau}(t))\right) \end{pmatrix} \end{split}$$

Constantes de Lipschitz • $k_{\tilde{F}} \leq k_F |\zeta|$ • $k_{\tilde{H}} \leq k_H |\zeta|$

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Plan de la	présent	ation				

Choix de l'émetteur chaotique

- Etude du chaos
- Détail de l'émetteur

Conception du récepteur : synthèse d'observateurs

- Observateur d'ordre plein
- Observateur d'ordre réduit

3 Cryptage/décryptage

- Exemples de cryptosystèmes chaotiques
- Conception d'un cryptosystème chaotique

Sécurité de la synchronisation : multimodèles chaotiques

- Exemples
- Synchronisation des multimodèles chaotiques

5 Conclusion et perspectives

Conception	du ré	cepteur : obs	ervateur d'ordre	e plein		
000		00000	000000000000000000000000000000000000000	0000000	0000000	000
Introduction	Plan	Emetteur	Observateurs	Cryptage	Multimodèles	Conclusion

Observateur exponentiel :

$$\dot{\hat{x}} = \tilde{A}\hat{x} + \tilde{B}y + \hat{\tilde{F}} + \hat{\tilde{H}} + \mathbf{K}(y - C\hat{x})$$

On note $e(t) = x(t) - \hat{x}(t)$.

C	1	and the second second				
000		00000	• 0000 00000000	0000000	0000000	000
Introduction	Plan	Emetteur	Observateurs	Cryptage	Multimodèles	Conclusion

Conception du récepteur : observateur d'ordre plein

Observateur exponentiel :

$$\dot{\hat{x}} = \tilde{A}\hat{x} + \tilde{B}y + \hat{\tilde{F}} + \hat{\tilde{H}} + \frac{\mathbf{K}}{\mathbf{K}}(y - C\hat{x})$$

On note $e(t) = x(t) - \hat{x}(t)$.

Théorème

S'il existe un gain K et deux matrices P, Q respectivement symétrique, définie positive et définie positive, et un réel strictement positif η tels que

$$\begin{pmatrix} (A - KC)^T P + P(A - KC) + \mu I_3 + Q + 2\eta P & 0 & P \\ 0 & \varphi Q + \rho I & 0 \\ P & 0 & -\frac{1}{\lambda} I_3 \end{pmatrix} < 0$$

avec $\lambda = \zeta k_F + \zeta k_H$, $\mu = \zeta k_F$, $\rho = \zeta k_H$, $\varphi = -e^{-2\eta\tau}$ alors l'erreur de synchronisation converge exponentiellement vers zéro, selon la formule :

$$\|e(t)\| \leqslant \sqrt{\frac{\alpha_1}{\alpha_2}} e^{-\eta t} \max_{\theta \in [-\tau,0]} \|e(\theta)\|$$

avec $\alpha_1 = \lambda_M(P) + \tau \lambda_M(Q)$ et $\alpha_2 = \lambda_m(P)$.

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	000000000000000000000000000000000000000	0000000	0000000	000
Analyse de	stabilité	é (1/3)				

• Fonctionnelle de Lyapunov-Krasovskii

$$V(e, e_{\tau}) = e^T P e + \int_{-\tau}^0 e^T (t+\theta) e^{2\eta\theta} Q e(t+\theta) d\theta$$

- e(t) converge exponentiellement vers 0 s'il existe φ > 0 tel que
 V(e, e_π) > 0
 - $\dot{V}(e, e_{\tau}) < e^{-\phi t} \max_{\theta \in [-\tau, 0]} V(e(0), e(\theta))$
- $\lambda_m(P) \|e\|^2 \leq V(e, e_\tau)$
- on dérive l'expression de V :

 $\dot{V} = \dot{e}^T P e + e^T P \dot{e} + e^T Q e - e^{-2\eta\tau} e_\tau^T Q e_\tau - 2\eta \int_{-\tau}^0 e^T (t+\theta) e^{2\eta\theta} Q e(t+\theta) d\theta$

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	000000000000000000000000000000000000000	0000000	0000000	000
Analyse de	stabilité	é (1/3)				

• Fonctionnelle de Lyapunov-Krasovskii

$$V(e, e_{\tau}) = e^T P e + \int_{-\tau}^0 e^T (t+\theta) e^{2\eta\theta} Q e(t+\theta) d\theta$$

- e(t) converge exponentiellement vers 0 s'il existe $\phi>0$ tel que
 - $V(e, e_{\tau}) > 0$
 - $\dot{V}(e, e_{\tau}) < e^{-\phi t} \max_{\theta \in [-\tau, 0]} V(e(0), e(\theta))$
- $\lambda_m(P) \|e\|^2 \leq V(e, e_\tau)$
- on dérive l'expression de V :

 $\dot{V} = \dot{e}^T P e + e^T P \dot{e} + e^T Q e - e^{-2\eta\tau} e_\tau^T Q e_\tau - 2\eta \int_{-\tau}^0 e^T (t+\theta) e^{2\eta\theta} Q e(t+\theta) d\theta$

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	000000000000000000000000000000000000000	0000000	0000000	000
Analyse de	stabilité	é (1/3)				

• Fonctionnelle de Lyapunov-Krasovskii

$$V(e, e_{\tau}) = e^T P e + \int_{-\tau}^0 e^T (t+\theta) e^{2\eta\theta} Q e(t+\theta) d\theta$$

- e(t) converge exponentiellement vers 0 s'il existe $\phi>0$ tel que
 - $V(e, e_{\tau}) > 0$
 - $\dot{V}(e, e_{\tau}) < e^{-\phi t} \max_{\theta \in [-\tau, 0]} V(e(0), e(\theta))$
- $\lambda_m(P) \|e\|^2 \leq V(e, e_\tau)$

• on dérive l'expression de V :

 $\dot{V} = \dot{e}^T P e + e^T P \dot{e} + e^T Q e - e^{-2\eta\tau} e_\tau^T Q e_\tau - 2\eta \int_{-\tau}^0 e^T (t+\theta) e^{2\eta\theta} Q e(t+\theta) d\theta$

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	000000000000000000000000000000000000000	0000000	0000000	000
Analyse de	stabilité	é (1/3)				

• Fonctionnelle de Lyapunov-Krasovskii

$$V(e, e_{\tau}) = e^T P e + \int_{-\tau}^0 e^T (t+\theta) e^{2\eta\theta} Q e(t+\theta) d\theta$$

- $\bullet \ e(t)$ converge exponentiellement vers 0 s'il existe $\phi>0$ tel que
 - $V(e, e_{\tau}) > 0$
 - $\dot{V}(e, e_{\tau}) < e^{-\phi t} \max_{\theta \in [-\tau, 0]} V(e(0), e(\theta))$
- $\lambda_m(P) \|e\|^2 \leq V(e, e_\tau)$
- on dérive l'expression de V :

$$\dot{V} = \dot{e}^T P e + e^T P \dot{e} + e^T Q e - e^{-2\eta\tau} e_\tau^T Q e_\tau - 2\eta \int_{-\tau}^0 e^T (t+\theta) e^{2\eta\theta} Q e(t+\theta) d\theta$$

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	000000000000000000000000000000000000000	0000000	000000	000
Analyse de	stabilité ([2/3]				

 ${\scriptstyle \bullet }$ majoration de ${\dot V}$:

$$\begin{split} \dot{V} &\leqslant \left(\begin{array}{c} e\\ e_{\tau} \end{array}\right)^{T} \mathcal{M} \left(\begin{array}{c} e\\ e_{\tau} \end{array}\right) - 2\eta \int_{-\tau}^{0} e^{T} (t+\theta) e^{2\eta\theta} Q e(t+\theta) d\theta \\ \\ \text{avec } \mathcal{M} &= \left(\begin{array}{c} A_{K}^{T} P + P A_{K} + \lambda P^{2} + \mu I + Q \quad 0\\ 0 & -e^{-2\eta\tau} Q + \rho I \end{array}\right) \end{split}$$

• expression de V :

$$V = \begin{pmatrix} e \\ e_{\tau} \end{pmatrix}^{T} \mathcal{N} \begin{pmatrix} e \\ e_{\tau} \end{pmatrix} + \int_{-\tau}^{0} e^{T} (t+\theta) e^{2\eta \theta} Q e(t+\theta) d\theta$$

avec $\mathcal{N} = \begin{pmatrix} P & 0 \\ 0 & 0 \end{pmatrix}$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●
	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	000000000000000000000000000000000000000	0000000	000000	000
Analyse de	stabilité ([2/3]				

 ${\scriptstyle \bullet }$ majoration de ${\dot V}$:

$$\begin{split} \dot{V} &\leqslant \left(\begin{array}{c} e\\ e_{\tau} \end{array}\right)^{T} \mathcal{M} \left(\begin{array}{c} e\\ e_{\tau} \end{array}\right) - 2\eta \int_{-\tau}^{0} e^{T} (t+\theta) e^{2\eta\theta} Q e(t+\theta) d\theta \\ \\ \text{avec } \mathcal{M} &= \left(\begin{array}{c} A_{K}^{T} P + P A_{K} + \lambda P^{2} + \mu I + Q & 0\\ 0 & -e^{-2\eta\tau} Q + \rho I \end{array}\right) \end{split}$$

 $\bullet\,$ expression de V :

$$V = \begin{pmatrix} e \\ e_{\tau} \end{pmatrix}^{T} \mathcal{N} \begin{pmatrix} e \\ e_{\tau} \end{pmatrix} + \int_{-\tau}^{0} e^{T} (t+\theta) e^{2\eta\theta} Q e(t+\theta) d\theta$$
$$\operatorname{avec} \mathcal{N} = \begin{pmatrix} P & 0 \\ 0 & 0 \end{pmatrix}$$

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	000000000000000000000000000000000000000	0000000	0000000	000
Analyse de	stabilit	é (3/3)				

$$\dot{V} + 2\eta V \leqslant \left(egin{array}{c} e \\ e_{ au} \end{array}
ight)^T \left(\mathcal{M} + 2\eta \mathcal{N}
ight) \left(egin{array}{c} e \\ e_{ au} \end{array}
ight)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- $\mathcal{M} + 2\eta \mathcal{N} < 0 \Rightarrow \dot{V} < -2\eta V \Rightarrow V(e, e_{\tau}) < e^{-2\eta t} \max_{\theta \in [-\tau, 0]} V(e(0), e(\theta))$
- or $\lambda_m(P) \|e\|^2 \leq V(e, e_\tau)$
- finalement $\|e(t)\| < \sqrt{\frac{\alpha_1}{\alpha_2}}e^{-\eta t} \max_{\theta \in [-\tau,0]} \|e(\theta)\|$

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	000000000000000000000000000000000000000	0000000	0000000	000
Analyse de	stabilit	é (3/3)				

$$\dot{V} + 2\eta V \leqslant \begin{pmatrix} e \\ e_{\tau} \end{pmatrix}^T (\mathcal{M} + 2\eta \mathcal{N}) \begin{pmatrix} e \\ e_{\tau} \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $\mathcal{M} + 2\eta \mathcal{N} < 0 \Rightarrow \dot{V} < -2\eta V \Rightarrow V(e, e_{\tau}) < e^{-2\eta t} \max_{\theta \in [-\tau, 0]} V(e(0), e(\theta))$

- or $\lambda_m(P) \|e\|^2 \leq V(e, e_\tau)$
- finalement $\|e(t)\| < \sqrt{\frac{\alpha_1}{\alpha_2}} e^{-\eta t} \max_{\theta \in [-\tau, 0]} \|e(\theta)\|$

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	000000000000000000000000000000000000000	0000000	0000000	000
Analyse de	stabilit	é (3/3)				

$$\dot{V} + 2\eta V \leqslant \begin{pmatrix} e \\ e_{\tau} \end{pmatrix}^T (\mathcal{M} + 2\eta \mathcal{N}) \begin{pmatrix} e \\ e_{\tau} \end{pmatrix}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• $\mathcal{M} + 2\eta \mathcal{N} < 0 \Rightarrow \dot{V} < -2\eta V \Rightarrow V(e, e_{\tau}) < e^{-2\eta t} \max_{\theta \in [-\tau, 0]} V(e(0), e(\theta))$

- or $\lambda_m(P) \|e\|^2 \leqslant V(e, e_\tau)$
- finalement $\|e(t)\| < \sqrt{\frac{\alpha_1}{\alpha_2}}e^{-\eta t} \max_{\theta \in [-\tau,0]} \|e(\theta)\|$

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	000000000000000000000000000000000000000	0000000	0000000	000
Analyse de	stabilit	é (3/3)				

$$\dot{V} + 2\eta V \leqslant \begin{pmatrix} e \\ e_{ au} \end{pmatrix}^T (\mathcal{M} + 2\eta \mathcal{N}) \begin{pmatrix} e \\ e_{ au} \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$\mathcal{M} + 2\eta \mathcal{N} < 0 \Rightarrow \dot{V} < -2\eta V \Rightarrow V(e, e_{\tau}) < e^{-2\eta t} \max_{\theta \in [-\tau, 0]} V(e(0), e(\theta))$$

- $\bullet \ \text{or} \ \lambda_m(P) \|e\|^2 \leqslant V(e,e_\tau)$
- finalement $\|e(t)\| < \sqrt{\frac{\alpha_1}{\alpha_2}} e^{-\eta t} \max_{\theta \in [-\tau,0]} \|e(\theta)\|$

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
			000000000000000000000000000000000000000			
Synthèse d	u gain	de l'observa	teur			

On reprend l'expression :

$$\mathcal{M} + 2\eta \mathcal{N} = \begin{pmatrix} (A - KC)^T P + P(A - KC) + \lambda P^2 + \mu I + Q + 2\eta P & 0\\ 0 & -e^{-2\eta \tau} Q + \rho I \end{pmatrix}$$

<□ > < @ > < E > < E > E のQ @

		00000		0000000	0000000	000
Sunthàca du	main a	la l'abcomus	tour			

On reprend l'expression :

$$\mathcal{M} + 2\eta \mathcal{N} = \begin{pmatrix} (A - KC)^T P + P(A - KC) + \lambda P^2 + \mu I + Q + 2\eta P & 0\\ 0 & -e^{-2\eta\tau}Q + \rho I \end{pmatrix}$$

En appliquant le complément de Schur, $\mathcal{M} + 2\eta \mathcal{N} < 0$ ssi :

$$\begin{pmatrix} (A - KC)^T P + P(A - KC) + \mu I_3 + Q + 2\eta P & 0 & P \\ 0 & -e^{-2\eta\tau}Q + \rho I & 0 \\ P & 0 & -\frac{1}{\lambda}I_3 \end{pmatrix} < 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Sunthèse	du anin d	de l'observa	tour			
			000000000000000000000000000000000000000			
	Plan		Observateurs	Cryptage	Multimodèles	Conclusion

On reprend l'expression :

$$\mathcal{M} + 2\eta \mathcal{N} = \begin{pmatrix} (A - KC)^T P + P(A - KC) + \lambda P^2 + \mu I + Q + 2\eta P & 0\\ 0 & -e^{-2\eta\tau}Q + \rho I \end{pmatrix}$$

En appliquant le complément de Schur, $M + 2\eta N < 0$ ssi :

$$\begin{pmatrix} (A - KC)^T P + P(A - KC) + \mu I_3 + Q + 2\eta P & 0 & P \\ 0 & -e^{-2\eta\tau}Q + \rho I & 0 \\ P & 0 & -\frac{1}{\lambda}I_3 \end{pmatrix} < 0$$

On effectue un changement de variable L = PK :

$$\begin{pmatrix} A^T P + PA - C^T L^T - LC + \mu I_3 + Q + 2\eta P & 0 & P \\ 0 & -e^{-2\eta \tau} Q + \rho I & 0 \\ P & 0 & -\frac{1}{\lambda} I_3 \end{pmatrix} < 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	000000000000	0000000	0000000	000
Simulatio	ns					

Paramètres

α	β	γ	δ	ε	σ	au
9	14	5	0.5	10	10^{4}	1

États initiaux

Gain $K = \begin{pmatrix} 46, 2 \\ 44, 6 \\ -39, 3 \end{pmatrix}$

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
			000000000000000000000000000000000000000			
Extension a	u cas gén	éral				

 $\bullet\,$ Modèle dynamique en dimension n :

$$\dot{X} = AX + F(X) + H(X_{\tau})$$
$$Y(t) = CX(t)$$

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
			0000000000000			
Extension a	u cas ge	énéral				

• Modèle dynamique en dimension n :

$$\dot{X} = AX + F(X) + H(X_{\tau})$$
$$Y(t) = CX(t)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hypothèses

Il existe $p < n \ {\rm tel} \ {\rm que}$

• $F(X(t)) = F(X_1(t), \dots, X_p(t)), H(X(t-\tau)) = H(X_1(t-\tau), \dots, X_p(t-\tau))$

•
$$C = (I_p \mid \overline{C}), \overline{C} = (\zeta_i \delta_{ij(i)})_{(i,j) \in [1,n] \times [1,p]}$$

 $\Rightarrow Y_i(t) = X_i(t) + \zeta_i X_{j(i)}(t), \quad p < j(i) \leq n$

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
			0000000000000			
Extension a	u cas	général				

• Modèle dynamique en dimension n :

$$\dot{X} = AX + F(X) + H(X_{\tau})$$
$$Y(t) = CX(t)$$

Hypothèses

Il existe p < n tel que

- $F(X(t)) = F(X_1(t), \dots, X_p(t)), H(X(t-\tau)) = H(X_1(t-\tau), \dots, X_p(t-\tau))$
- $C = (I_p \mid \bar{C}), \bar{C} = (\zeta_i \delta_{ij(i)})_{(i,j) \in [1,n] \times [1,p]}$ $\Rightarrow Y_i(t) = X_i(t) + \zeta_i X_{j(i)}(t), \quad p < j(i) \leq n$
- Transformation du système : $\dot{X} = \tilde{A}X + \tilde{B}Y + \tilde{F}(X,Y) + \tilde{H}(X_{\tau},Y_{\tau}))$ Y = CX

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
			0000000000000			
Extension a	u cas	général				

• Modèle dynamique en dimension n :

$$\dot{X} = AX + F(X) + H(X_{\tau})$$
$$Y(t) = CX(t)$$

Hypothèses

Il existe p < n tel que

- $F(X(t)) = F(X_1(t), \dots, X_p(t)), H(X(t-\tau)) = H(X_1(t-\tau), \dots, X_p(t-\tau))$
- $C = (I_p \mid \bar{C}), \bar{C} = (\zeta_i \delta_{ij(i)})_{(i,j) \in [1,n] \times [1,p]}$ $\Rightarrow Y_i(t) = X_i(t) + \zeta_i X_{j(i)}(t), \quad p < j(i) \leq n$
- Transformation du système : $\dot{X} = \tilde{A}X + \tilde{B}Y + \tilde{F}(X,Y) + \tilde{H}(X_{\tau},Y_{\tau}))$ Y = CX

Notations

$$\begin{aligned} X &= \begin{pmatrix} X \\ \bar{X} \end{pmatrix}, \dim \bar{X} = (p \times n), A = \begin{pmatrix} \bar{A} & | & \bar{A} \end{pmatrix} \\ \Rightarrow AX &= \begin{pmatrix} \bar{A} & \bar{A} \end{pmatrix} \begin{pmatrix} Y - \bar{C}\bar{X} \\ \bar{X} \end{pmatrix} = \bar{A}Y - \bar{A}\bar{C}\bar{X} + \bar{A}\bar{X} \\ \\ \text{Identification} : \tilde{A} &= \begin{pmatrix} 0_{n \times p} | & \bar{A}\bar{C} + \bar{A} \end{pmatrix} \text{ et } \tilde{B} = \bar{A} \end{aligned}$$

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	00000000000000	0000000	0000000	000
Cas général	(suite)					

Constante de Lipschitz : fonction \tilde{F}

$$\begin{split} \tilde{F} &= F\left(Y_{1}(t) - \zeta_{1}X_{j(1)}(t), \dots, Y_{p}(t) - \zeta_{p}X_{j(p)}(t)\right) \\ & \|\tilde{F} - \hat{\tilde{F}}\| = \|F\left(Y_{1}(t) - \zeta_{1}X_{j(1)}(t), \dots, Y_{p}(t) - \zeta_{p}X_{j(p)}(t)\right) \\ \Rightarrow & -F\left(Y_{1}(t) - \zeta_{1}\hat{X}_{j(1)}(t), \dots, Y_{p}(t) - \zeta_{p}\hat{X}_{j(p)}(t)\right) \| \\ & \leqslant k_{F}\zeta_{max}\|\left(X_{j(1)}(t) - \hat{X}_{j(1)}(t), \dots, X_{j(p)}(t) - \hat{X}_{j(p)}(t)\right)\| \\ & \leqslant k_{F}\zeta_{max}\|\epsilon(t)\| \\ \text{avec } \zeta_{max} = \max_{i=1,p} |\zeta_{i}| \text{ et } \epsilon(t) = X(t) - \hat{X}(t) \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Constante de Lipschitz : fonction \tilde{H}

$$\begin{split} \tilde{H} &= H\left(Y_1(t-\tau) - \zeta_1 X_{j(1)}(t-\tau), \dots, Y_p(t-\tau) - \zeta_p X_{j(p)}(t-\tau)\right) \\ \Rightarrow \|\tilde{H} - \hat{\tilde{H}}\| \leqslant k_H \zeta_{max} \|\epsilon(t)\| \end{split}$$

<u></u>		· · · · · · · · · · · · · · · · · · ·				
000		00000	000000000000000000000000000000000000000	0000000	0000000	000
	Plan		Observateurs	Cryptage	Multimodèles	Conclusion

Observateur d'ordre réduit (1/2)

Modèle équivalent

• on choisit la matrice $C=\left(egin{array}{cc} 1 & \zeta & 0 \end{array}
ight) \Rightarrow x_1(t)=y(t)-\zeta x_2(t)$

$$\begin{cases} \dot{x}(t) = \tilde{A}x(t) + \tilde{B}y(t) + \tilde{F}(x(t), y(t)) + \tilde{H}(x_{\tau}(t), y_{\tau}(t)) \\ y(t) = Cx(t) \end{cases}$$

But = trouver une matrice
$$E$$

• orthogonale au vecteur $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$
• telle que la matrice $\begin{pmatrix} E\\C \end{pmatrix}$ soit de plein rang colonne
 $\Rightarrow \exists P, Q / (P Q) \begin{pmatrix} E\\C \end{pmatrix} = I_3$

Système singulier

$$\begin{cases} E\dot{x} = A_1 x + B_1 y + H_1(x_{\tau}) & A_1 = EA \\ y = Cx & \text{avec} \quad B_1 = E\tilde{B} \\ H_1 = E\tilde{H} \end{cases}$$

• État réduit :
$$z = Tx = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$

• Dynamique de l'observateur réduit : $\frac{z}{2}$

$$\dot{z} = \frac{Nz + Ky + r(z, y, z_{\tau}, y_{\tau})}{\dot{z} = z + TQy}$$

Théorème

Si les conditions suivantes sont vérifiées :

- condition de détectabilité rang $\begin{pmatrix} sE A_1 \\ C \end{pmatrix} = \dim x, \ \forall s \ge 0$
- \exists une matrice N telle que $NTPE TP(A_1 + B_1C) + KC = 0$
- la matrice $\begin{pmatrix} TPE \\ C \end{pmatrix}$ est inversible

• $\exists U = U^T > 0$ et $\Omega > 0$ telles que : $\begin{pmatrix} N^T U + UN + \Omega & UTP \\ (\star) & -\frac{1}{k_{H_1}}I_2 \end{pmatrix} < 0$,

 $k_{H_1}I_2 - \Omega < 0$

alors la fonction $r(z, y, z_{\tau}, y_{\tau})$ peut être définie par : $r(z, y, z_{\tau}, y_{\tau}) = TPH_1(\hat{x}_{\tau})$ où $\hat{x} = \begin{pmatrix} TPE \\ C \end{pmatrix}^{-1} \begin{pmatrix} \hat{z} \\ y \end{pmatrix}$. Dans ce cas, $\hat{x} \to x$.

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	000000000000000000000000000000000000000	0000000	0000000	000
Démonstrat	tion					

- Vecteur d'erreur de synchronisation réduit : $e = \hat{z} z = z TPEx$
- Dynamique de e :

$$\dot{e} = Nz + Ky + r(z, y, z_{\tau}, y_{\tau}) - TP (A_1 x + B_1 y + H_1(x_{\tau})) = Ne + TP (H_1(\hat{x}_{\tau}) - H_1(x_{\tau}))$$

• Fonctionnelle de Lyapunov-Krasovskii : $V = e^{T}Ue + \int_{-\tau}^{0} e(t+\theta)^{T}\Omega e(t+\theta)d\theta$

• On dérive l'expression de V :

$$\dot{V} = e^T \left(N^T U + U N + \Omega \right) e + 2e^T U T P \left(H_1(\hat{x}_\tau) - H_1(x_\tau) \right) - e_\tau^T \Omega e_\tau$$

• Majoration :

$$\dot{V} \leqslant e^{T} \left(N^{T} U + U N + k_{H_{1}} (UTP) (UTP)^{T} \right) e + e_{\tau}^{T} \left(k_{H_{1}} I_{2} - \Omega \right) e_{\tau}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\Rightarrow e \rightarrow 0$, puis $\hat{x} \rightarrow x$

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	000000000000000000000000000000000000000	0000000	0000000	000
Démonstra	tion					

- Vecteur d'erreur de synchronisation réduit : $e = \hat{z} z = z TPEx$
- Dynamique de e :

$$\dot{e} = Nz + Ky + r(z, y, z_{\tau}, y_{\tau}) - TP (A_1 x + B_1 y + H_1(x_{\tau})) = Ne + TP (H_1(\hat{x}_{\tau}) - H_1(x_{\tau}))$$

- Fonctionnelle de Lyapunov-Krasovskii : $V = e^{T}Ue + \int_{-\tau}^{0} e(t+\theta)^{T}\Omega e(t+\theta)d\theta$
- On dérive l'expression de V :

$$\dot{V} = e^T \left(N^T U + UN + \Omega \right) e + 2e^T UTP \left(H_1(\hat{x}_\tau) - H_1(x_\tau) \right) - e_\tau^T \Omega e_\tau$$

• Majoration :

$$\dot{V} \leqslant e^T \left(N^T U + UN + k_{H_1} (UTP) (UTP)^T \right) e + e_\tau^T \left(k_{H_1} I_2 - \Omega \right) e_\tau$$

 $\Rightarrow e \rightarrow 0$, puis $\hat{x} \rightarrow x$

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	000000000000000000000000000000000000000	0000000	0000000	000
Démonstra	tion					

- Vecteur d'erreur de synchronisation réduit : $e = \hat{z} z = z TPEx$
- Dynamique de e :

$$\dot{e} = Nz + Ky + r(z, y, z_{\tau}, y_{\tau}) - TP (A_1 x + B_1 y + H_1(x_{\tau})) = Ne + TP (H_1(\hat{x}_{\tau}) - H_1(x_{\tau}))$$

- Fonctionnelle de Lyapunov-Krasovskii : $V = e^{T}Ue + \int_{-\tau}^{0} e(t+\theta)^{T}\Omega e(t+\theta)d\theta$
- On dérive l'expression de V :

$$\dot{V} = e^T \left(N^T U + U N + \Omega \right) e + 2e^T U T P \left(H_1(\hat{x}_\tau) - H_1(x_\tau) \right) - e_\tau^T \Omega e_\tau$$

• Majoration :

$$\dot{V} \leqslant e^T \left(N^T U + UN + k_{H_1} (UTP) (UTP)^T \right) e + e_\tau^T \left(k_{H_1} I_2 - \Omega \right) e_\tau$$

 $e \to 0$, puis $\hat{x} \to x$

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	000000000000000000000000000000000000000	0000000	0000000	000
Démonstra	tion					

- Vecteur d'erreur de synchronisation réduit : $e = \hat{z} z = z TPEx$
- Dynamique de e :

$$\dot{e} = Nz + Ky + r(z, y, z_{\tau}, y_{\tau}) - TP (A_1 x + B_1 y + H_1(x_{\tau})) = Ne + TP (H_1(\hat{x}_{\tau}) - H_1(x_{\tau}))$$

- Fonctionnelle de Lyapunov-Krasovskii : $V = e^{T}Ue + \int_{-\tau}^{0} e(t+\theta)^{T}\Omega e(t+\theta)d\theta$
- On dérive l'expression de V :

$$\dot{V} = e^T \left(N^T U + UN + \Omega \right) e + 2e^T UTP \left(H_1(\hat{x}_\tau) - H_1(x_\tau) \right) - e_\tau^T \Omega e_\tau$$

Majoration :

$$\begin{split} \dot{V} \leqslant e^T \left(N^T U + U N + k_{H_1} (UTP) (UTP)^T \right) e + e_\tau^T \left(k_{H_1} I_2 - \Omega \right) e_\tau \\ \Rightarrow e \to 0, \text{ puis } \hat{x} \to x \end{split}$$

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
			000000000000000000000000000000000000000			
Synthèse de	s gains N	$^{\prime}$ et K				

•
$$NTPE - TP(A_1 + B_1C) + KC = 0 \Leftrightarrow NT - TPA_2 = MC$$

avec $A_2 = A_1 + B_1C$ et $M = NTQ - K$
• $\exists L_1, L_2 : \begin{pmatrix} TPE \\ C \end{pmatrix}^{-1} = \begin{pmatrix} L_1 & L_2 \end{pmatrix}$
• on multiplie (à droite) par $L_2 \Rightarrow NTL_2 - TPA_2L_2 = M$

• on définit une matrice
$$R$$
 telle que $\begin{pmatrix} TPE \\ C \end{pmatrix} = \begin{pmatrix} I_2 & -F \\ 0 & 1 \end{pmatrix} \begin{pmatrix} R \\ C \end{pmatrix}$
• D'où $\begin{cases} T(I_3 - QC) = R - FC \\ T = R + (TQ - F)C \\ T = R + SC \end{cases}$ avec $S = TQ - F$

 Finalement N = RPA₂L₁ − SCPA₂L₁ ⇒ placement des pôles de S pour garantir la stabilité de N (si la paire (RPA₂L₁, CPA₂L₁) est détectable)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
			000000000000000000000000000000000000000			
Synthèse de	s gains N	$^{\prime}$ et K				

•
$$NTPE - TP(A_1 + B_1C) + KC = 0 \Leftrightarrow NT - TPA_2 = MC$$

avec $A_2 = A_1 + B_1C$ et $M = NTQ - K$
• $\exists L_1, L_2 : \begin{pmatrix} TPE \\ C \end{pmatrix}^{-1} = \begin{pmatrix} L_1 & L_2 \end{pmatrix}$

• on multiplie (à droite) par $L_2 \Rightarrow NTL_2 - TPA_2L_2 = M$

• on multiplie (à droite) par $L_1 \Rightarrow N = TPA_2L_1$

• on définit une matrice
$$R$$
 telle que $\begin{pmatrix} TPE \\ C \end{pmatrix} = \begin{pmatrix} I_2 & -F \\ 0 & 1 \end{pmatrix} \begin{pmatrix} R \\ C \end{pmatrix}$
• D'où $\begin{cases} T(I_3 - QC) = R - FC \\ T = R + (TQ - F)C \\ T = R + SC \end{cases}$ avec $S = TQ - F$

 Finalement N = RPA₂L₁ − SCPA₂L₁ ⇒ placement des pôles de S pour garantir la stabilité de N (si la paire (RPA₂L₁, CPA₂L₁) est détectable)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
			000000000000000000000000000000000000000			
Synthèse de	s gains Λ	V et K				

•
$$NTPE - TP(A_1 + B_1C) + KC = 0 \Leftrightarrow NT - TPA_2 = MC$$

avec $A_2 = A_1 + B_1C$ et $M = NTQ - K$
• $\exists L_1, L_2 : \begin{pmatrix} TPE \\ C \end{pmatrix}^{-1} = \begin{pmatrix} L_1 & L_2 \end{pmatrix}$

• on multiplie (à droite) par $L_2 \Rightarrow NTL_2 - TPA_2L_2 = M$

• on multiplie (à droite) par $L_1 \Rightarrow N = TPA_2L_1$

• on définit une matrice
$$R$$
 telle que $\begin{pmatrix} TPE \\ C \end{pmatrix} = \begin{pmatrix} I_2 & -F \\ 0 & 1 \end{pmatrix} \begin{pmatrix} R \\ C \end{pmatrix}$
• D'où $\begin{cases} T(I_3 - QC) = R - FC \\ T = R + (TQ - F)C \\ T = R + SC \end{cases}$ avec $S = TQ - F$

 Finalement N = RPA₂L₁ − SCPA₂L₁ ⇒ placement des pôles de S pour garantir la stabilité de N (si la paire (RPA₂L₁, CPA₂L₁) est détectable)

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
			000000000000000000000000000000000000000			
Synthèse de	s gains N	$^{\prime}$ et K				

•
$$NTPE - TP(A_1 + B_1C) + KC = 0 \Leftrightarrow NT - TPA_2 = MC$$

avec $A_2 = A_1 + B_1C$ et $M = NTQ - K$
• $\exists L_1, L_2 : \begin{pmatrix} TPE \\ C \end{pmatrix}^{-1} = \begin{pmatrix} L_1 & L_2 \end{pmatrix}$
• on multiplie (à droite) par $L_2 \Rightarrow NTL_2 - TPA_2L_2 = M$

• on multiplie (à droite) par $L_1 \Rightarrow N = TPA_2L_1$

• on définit une matrice
$$R$$
 telle que $\begin{pmatrix} TPE \\ C \end{pmatrix} = \begin{pmatrix} I_2 & -F \\ 0 & 1 \end{pmatrix} \begin{pmatrix} R \\ C \end{pmatrix}$
• D'où $\begin{cases} T(I_3 - QC) = R - FC \\ T = R + (TQ - F)C \\ T = R + SC \end{cases}$ avec $S = TQ - F$

 Finalement N = RPA₂L₁ − SCPA₂L₁ ⇒ placement des pôles de S pour garantir la stabilité de N (si la paire (RPA₂L₁, CPA₂L₁) est détectable)

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
			000000000000000000000000000000000000000			
Synthèse de	s gains N	$^{\prime}$ et K				

•
$$NTPE - TP(A_1 + B_1C) + KC = 0 \Leftrightarrow NT - TPA_2 = MC$$

avec $A_2 = A_1 + B_1C$ et $M = NTQ - K$
• $\exists L_1, L_2 : \begin{pmatrix} TPE \\ C \end{pmatrix}^{-1} = \begin{pmatrix} L_1 & L_2 \end{pmatrix}$
• on multiplie (à droite) par $L_2 \Rightarrow NTL_2 - TPA_2L_2 = M$
• on multiplie (à droite) par $L_1 \Rightarrow N = TPA_2L_1$

• on définit une matrice
$$R$$
 telle que $\begin{pmatrix} T T D \\ C \end{pmatrix} = \begin{pmatrix} T_2 & -T \\ 0 & 1 \end{pmatrix} \begin{pmatrix} T \\ C \end{pmatrix}$
• D'où $\begin{cases} T(I_3 - QC) = R - FC \\ T = R + (TQ - F)C \\ T = R + SC \end{cases}$ avec $S = TQ - F$

 Finalement N = RPA₂L₁ − SCPA₂L₁ ⇒ placement des pôles de S pour garantir la stabilité de N (si la paire (RPA₂L₁, CPA₂L₁) est détectable)

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
			000000000000000000000000000000000000000			
Synthèse de	s gains N	V et K				

•
$$NTPE - TP(A_1 + B_1C) + KC = 0 \Leftrightarrow NT - TPA_2 = MC$$

avec $A_2 = A_1 + B_1C$ et $M = NTQ - K$
• $\exists L_1, L_2 : \begin{pmatrix} TPE \\ C \end{pmatrix}^{-1} = \begin{pmatrix} L_1 & L_2 \end{pmatrix}$
• on multiplie (à droite) par $L_2 \Rightarrow NTL_2 - TPA_2L_2 = M$
• on multiplie (à droite) par $L_1 \Rightarrow N = TPA_2L_1$

• on définit une matrice
$$R$$
 telle que $\begin{pmatrix} TPE \\ C \end{pmatrix} = \begin{pmatrix} I_2 & -F \\ 0 & 1 \end{pmatrix} \begin{pmatrix} R \\ C \end{pmatrix}$
• D'où $\begin{cases} T(I_3 - QC) = R - FC \\ T = R + (TQ - F)C \\ T = R + SC \end{cases}$ avec $S = TQ - F$

 Finalement N = RPA₂L₁ − SCPA₂L₁ ⇒ placement des pôles de S pour garantir la stabilité de N (si la paire (RPA₂L₁, CPA₂L₁) est détectable)

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
			000000000000000000000000000000000000000			
Synthèse de	s gains Λ	V et K				

•
$$NTPE - TP(A_1 + B_1C) + KC = 0 \Leftrightarrow NT - TPA_2 = MC$$

avec $A_2 = A_1 + B_1C$ et $M = NTQ - K$
• $\exists L_1, L_2 : \begin{pmatrix} TPE \\ C \end{pmatrix}^{-1} = \begin{pmatrix} L_1 & L_2 \end{pmatrix}$
• on multiplie (à droite) par $L_2 \Rightarrow NTL_2 - TPA_2L_2 = M$
• on multiplie (à droite) par $L_1 \Rightarrow N = TPA_2L_1$

• on définit une matrice
$$R$$
 telle que $\begin{pmatrix} TPE \\ C \end{pmatrix} = \begin{pmatrix} I_2 & -F \\ 0 & 1 \end{pmatrix} \begin{pmatrix} R \\ C \end{pmatrix}$
• D'où $\begin{cases} T(I_3 - QC) = R - FC \\ T = R + (TQ - F)C \\ T = R + SC \end{cases}$ avec $S = TQ - F$

 Finalement N = <u>RPA₂L₁</u> − <u>SCPA₂L₁</u> ⇒ placement des pôles de S pour garantir la stabilité de N (si la paire (RPA₂L₁, CPA₂L₁) est détectable)

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	000000000000	0000000	0000000	000
Simulatio	ns					

Paramètres

α	β	γ	δ	ε	σ	τ
9	14	5	0.5	10	10^{4}	1

États initiaux

$$x_0 = (\begin{array}{ccc} 0,1 & 0 & 0,1 \end{array})^T$$

 $z_0 = (\begin{array}{ccc} 10 & 5 \end{array})^T$

Gains

$$N = \begin{pmatrix} -1,00001 & 1\\ -14 & -5 \end{pmatrix}$$
$$K = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Plan de la	a présenta	ation				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Choix de l'émetteur chaotique

- Etude du chaos
- Détail de l'émetteur
- 2 Conception du récepteur : synthèse d'observateurs
 - Observateur d'ordre plein
 - Observateur d'ordre réduit

Cryptage/décryptage

- Exemples de cryptosystèmes chaotiques
- Conception d'un cryptosystème chaotique

Sécurité de la synchronisation : multimodèles chaotiques

- Exemples
- Synchronisation des multimodèles chaotiques

5 Conclusion et perspectives

Observateur à entrées inconnues, ou cryptage par inclusion

Cryptage par modulation de paramètre

▲□> ▲圖> ▲目> ▲目> 二目 - のへで

▲□ > ▲圖 > ▲目 > ▲目 > → 目 - のへで

Méthode proposée

Modulation de la phase du second signal chaotique par une fonction du message \Rightarrow second signal transmis :

$$y_2(t) = x_3 \left(t - \theta \left(u(t) \right) \right)$$

(日) (日) (日) (日) (日) (日) (日) (日)

Choix de la fonction de modulation

$$\theta(u(t)) = T_u u(t)$$
Introduction	Plan	Emetteur	Observateurs	Cryptage	Multimodèles	Conclusion
			0000000000000000	000000	000000	000

Décryptage : approche analytique

Formule de Taylor-Lagrange :

$$y_2(t) - x_3(t) = y_2(t) - x_3(t - T_u u(t))$$

$$=\sum_{k=1}^{n} \frac{(-T_{u}u(t))^{k}}{k!} x_{3}^{(k)}(t) - \int_{t-T_{u}u(t)}^{t} \frac{(t-T_{u}u(t)-s)^{n}}{n!} x_{3}^{(n+1)}(s) ds$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	000000	0000000	000
-						

Décryptage : approche analytique

Formule de Taylor-Lagrange :

$$y_2(t) - x_3(t) = y_2(t) - x_3(t - T_u u(t))$$

$$=\sum_{k=1}^{n} \frac{(-T_{u}u(t))^{k}}{k!} x_{3}^{(k)}(t) - \int_{t-T_{u}u(t)}^{t} \frac{(t-T_{u}u(t)-s)^{n}}{n!} x_{3}^{(n+1)}(s) ds$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Approximation à l'ordre un :

$$y_2(t) - x_3(t) = -T_u u(t) \dot{x}_3(t)$$

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	000000	0000000	000

Décryptage : approche analytique

Formule de Taylor-Lagrange :

$$y_2(t) - x_3(t) = y_2(t) - x_3(t - T_u u(t))$$

$$=\sum_{k=1}^{n} \frac{(-T_u u(t))^k}{k!} x_3^{(k)}(t) - \int_{t-T_u u(t)}^{t} \frac{(t-T_u u(t)-s)^n}{n!} x_3^{(n+1)}(s) ds$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Approximation à l'ordre un :

$$y_2(t) - x_3(t) = -T_u u(t) \dot{x}_3(t)$$

Formule de décryptage

$$\hat{u}(t) = \frac{\hat{x}_3(t) - y_2(t)}{T_u \dot{x}_3(t)}$$

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Simulations	s numé	riques				

• Système émetteur :

$$\begin{cases} \dot{x}_1(t) = -\alpha x_1(t) + \alpha x_2(t) - \alpha \delta \tanh(x_1(t)) \\ \dot{x}_2(t) = x_1(t) - x_2(t) + x_3(t) \\ \dot{x}_3(t) = -\beta x_2(t) - \gamma x_3(t) + \varepsilon \sin(\sigma x_{1\tau}(t)) \end{cases}$$

• Paramètres :

α	β	γ	δ	ε	σ	τ
9	14	5	0,5	100	10^{4}	1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Signaux transmis au récepteur :

- y(t) = Cx(t) avec $C = (1 \ \zeta \ 0), \ \zeta = 10^{-5}$ $y_2(t) = x_3(t T_u u(t))$ avec $T_u = 0,01$ s

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Transmis	sion d'un	texte				

Texte original

message vide messa

Baudelaire "Harmonie du soir", extrait des Fleurs du mal Voici venir les temps où vibrant sur sa tige Chaque fleur s'évapore ainsi qu'un encensoir; Les sons et les parfums tournent dans l'air du soir; Valse mélancolique et langoureux vertige!

Chaque fleur s'évapore ainsi qu'un encensoir; Le violon frémit comme un coeur qu'on afflige; Valse mélancolique et langoureux vertige! Le ciel est triste et beau comme un grand reposoir.

Le violon frémit comme un coeur qu'on afflige, Un coeur tendre, qui hait le néant vaste et noir! Le ciel est triste et beau comme un grand reposir; Le soleil s'est noyé dans son sang qui se fige.

Un coeur tendre, qui hait le néant vaste et noir, Du passé lumineux recueille tout vestige! Le soleil s'est noyé dans son sang qui se fige... Ton souvenir en moi luit comme un ostensoir!

Texte crypté

ÍÔÓÒÐĪÎÍÍĒÊÉCÆÅÄÄÂÁ;34½¼»° ¶u'2±°"®-

«"©"8¥0£¢; ŸZ @)TM"-""" Ž (Š^^+,..... ~}{zxwvtsqpnmkjigfdcb']\[YXWUTRRPONMLJIHGFE DCBBA@?>==<<....998888888877788889999...<<=>>?@ ABBDEEGHUKI NOORSTVWXZI1^`acdfgiklnogrtuwxz{ ™***** □ (Љ1+f.€-) {zxvurgonlihfdca 1ZYWUSRPNLJ IGECA@>=::865421//.+*)('&%%\$\$##""!!!!!!!!!!!!#\$\$% &&'()*+,/0234689<=?@BDFHKLNPSUWY[]'bdgiknpst wy{}€,...†‰(□ ***•_TM) □ Ÿ ¢£¥8**«(® *±23 10 - 1111000111 --- 911 '3200 R -- wCl" ¥Cet žoro TM 'Š%ot -- zwtrol lotyz}€..t<□'• œ £!©¬ *>>½ÅÅÅĖĖÎĐÓÔ×ÙÛÝßáäācêēiìīňôôðö÷øùúúúūuýbbyyy γγγγγγγγbbýýūūûûûûø÷öðôóôňðñìēêèçæäãáàĐŪÛÚ×ÔÓÔ ÐILĒĒǯ¾¼^{o1}·µ²±[−]«€/¥¢¢Ÿ□>™—•'□Ž(ĒŠ' ~vwusaomkigdb'/\ZXVTRONMKHGEDBA?=<'9755321

Texte décrypté

Baudelaire "Harmonie du soir", extrait des Fleurs du mal Voici venir les temps où vibrant sur sa tige Chaque fleur s'évapore ainsi qu'un encensoir, Les sons et les parfums tournent dans l'air du soir, Valse mélancolique et langoureux vertige!

Chaque fleur s'évapore ainsi qu'un encensoir; Le violon frémit comme un coeur qu'on afflige; Valse mélancolique et langoureux vertige! Le ciel est triste et beau comme un grand reposoir.

Le violon frémit comme un coeur qu'on afflige, Un coeur tendre, qui hait le néant vaste et noir! Le ciel est triste et beau comme un grand reposir; Le soleil s'est nové dans son sang qui se fige.

Un coeur tendre, qui hait le néant vaste et noir, Du passé lumineux recueille tout vestige! Le soleil s'est noyé dans son sang qui se fige... Ton souvenir en moi luit comme un ostensoir!

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Transmission d'une image								
000		00000	0000000000000	0000000	0000000	000		
	Plan		Observateurs	Cryptage	Multimodèles	Conclusion		

Transmission d'une image

Image originale

Image cryptée

Image reconstruite

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Transmis	sion d'un	son				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Plan de la	présent	ation				

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Choix de l'émetteur chaotique

- Etude du chaos
- Détail de l'émetteur
- 2 Conception du récepteur : synthèse d'observateurs
 - Observateur d'ordre plein
 - Observateur d'ordre réduit

3 Cryptage/décryptage

- Exemples de cryptosystèmes chaotiques
- Conception d'un cryptosystème chaotique

Sécurité de la synchronisation : multimodèles chaotiques

- Exemples
- Synchronisation des multimodèles chaotiques

5 Conclusion et perspectives

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	000000	000
Sécurité de	la synchr	onisation				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Attaques par des techniques de reconstruction à retard

- Signal chaotique différent d'un bruit blanc
- Propriétés géométriques caractéristiques de chaque type d'attracteur
- Signature de chaque émetteur chaotique (au niveau temporel et spectral)

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	000000000000000000	0000000	000000	000
Sécurité de	la synchr	onisation				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Attaques par des techniques de reconstruction à retard

- Signal chaotique différent d'un bruit blanc
- Propriétés géométriques caractéristiques de chaque type d'attracteur
- Signature de chaque émetteur chaotique (au niveau temporel et spectral)

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	00000000000000	0000000	000000	000
Sécurité de	la synchr	onisation				

Attaques par des techniques de reconstruction à retard

- Signal chaotique différent d'un bruit blanc
- Propriétés géométriques caractéristiques de chaque type d'attracteur
- Signature de chaque émetteur chaotique (au niveau temporel et spectral)

Système de Rössler

Introduction	Plan	Emetteur	Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	000000000000000	0000000	••••••	000
Sécurité de	la synchr	onisation				

Attaques par des techniques de reconstruction à retard

- Signal chaotique différent d'un bruit blanc
- Propriétés géométriques caractéristiques de chaque type d'attracteur
- Signature de chaque émetteur chaotique (au niveau temporel et spectral)

		Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000			00000	0000000000000	0000000	000000	000
	 c						

Nouvelle famille de systèmes chaotiques

Multimodèles linéaires

- Modèle non linéaire $\dot{x}(t) = f(x(t))$
- $p \mod \text{èles} \lim \text{éaires} de \text{ base}$ $\dot{x}_i(t) = A_i x_i(t)$
- \Rightarrow multimodèle

$$\dot{x}(t) = \sum_{i=1}^{p} \mu_i(\xi(t)) A_i x(t)$$

• avec
$$\left\{ \begin{array}{l} \sum_{i=1}^p \mu_i(\xi) = 1 \\ 0 \leq \mu_i(\xi) \leq 1 \ \forall i=1,p \end{array} \right.$$

Multimodèles chaotiques

- p modèles chaotiques $\dot{x}_i(t) = A_i x_i(t) + f_i(x_i(t))$
- \Rightarrow multimodèle chaotique

 $\begin{cases} \dot{x}(t) = \sum_{i=1}^{p} \mu_i(y(t)) \left(A_i x(t) + f_i(x(t)) \right) \\ y(t) = C x(t) \end{cases}$

• avec
$$\left\{ \begin{array}{l} \sum_{i=1}^p \mu_i(y) = 1 \\ 0 \leq \mu_i(y) \leq 1 \; \forall i = 1, p \end{array} \right.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

000 0000000 0000000 000000 00000 00000 0000

Nouvelle famille de systèmes chaotiques

Multimodèles linéaires

- Modèle non linéaire $\dot{x}(t) = f(x(t))$
- $p \mod$ base linéaires de base $\dot{x}_i(t) = A_i x_i(t)$
- \Rightarrow multimodèle

$$\dot{x}(t) = \sum_{i=1}^{p} \mu_i(\xi(t)) A_i x(t)$$

• avec
$$\left\{ \begin{array}{l} \sum_{i=1}^p \mu_i(\xi) = 1 \\ 0 \leq \mu_i(\xi) \leq 1 \ \forall i=1,p \end{array} \right.$$

Multimodèles chaotiques

- p modèles chaotiques $\dot{x}_i(t) = A_i x_i(t) + f_i(x_i(t))$
- \Rightarrow multimodèle chaotique

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{p} \mu_i(y(t)) \left(A_i x(t) + f_i(x(t)) \right) \\ y(t) = C x(t) \end{cases}$$

• avec
$$\left\{\begin{array}{l} \sum_{i=1}^{p} \mu_i(y) = 1\\ 0 \leq \mu_i(y) \leq 1 \ \forall i = 1, p \end{array}\right.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへで

Introduction 000	Plan	Emetteur 00000	Observateurs 00000000000000	Cryptage 0000000	Multimodèles	Conclusion 000
Exemple 1						

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Multimodèle à base de circuits de Chua

Modèle de base :

$$\begin{cases} \dot{x_1} = -\alpha x_1 + \alpha x_2 - \alpha f(x_1) \\ \dot{x_2} = x_1 - x_2 + x_3 \\ \dot{x_3} = -\beta x_2 - \gamma x_3 \end{cases}$$

avec $f(x_1) = bx_1 + \frac{1}{2}(a-b)(|x_1+1| - |x_1-1|)$

Introduction 000	Plan	Emetteur 00000	Observateurs 00000000000000	Cryptage 0000000	Multimodèles	Conclusion 000
Exemple 1						

Multimodèle à base de circuits de Chua

Modèle de base :

$$\begin{cases} \dot{x_1} = -\alpha x_1 + \alpha x_2 - \alpha f(x_1) \\ \dot{x_2} = x_1 - x_2 + x_3 \\ \dot{x_3} = -\beta x_2 - \gamma x_3 \end{cases}$$

avec $f(x_1) = bx_1 + \frac{1}{2}(a-b)\left(|x_1+1| - |x_1-1|\right)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 000	Plan	Emetteur 00000	Observateurs 00000000000000	Cryptage 0000000	Multimodèles	Conclusion 000
Exemple 1						

Multimodèle à base de circuits de Chua

Modèle de base :

$$\begin{cases} \dot{x_1} = -\alpha x_1 + \alpha x_2 - \alpha f(x_1) \\ \dot{x_2} = x_1 - x_2 + x_3 \\ \dot{x_3} = -\beta x_2 - \gamma x_3 \end{cases}$$

avec $f(x_1) = bx_1 + \frac{1}{2}(a-b)(|x_1+1| - |x_1-1|)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Diagrammo	do hi	furcations				
000		00000	0000000000000	0000000	000000	000
	Plan		Observateurs	Cryptage	Multimodèles	Conclusion

Diagi

Fonction d'activation μ 0.7 0.65 0.6 0.55 $\mu(y) = \frac{1 + \tanh(\omega y)}{2}$ 0.5 0.45 0.4 0.35 54 100 100

Diagramme de bifurcations (par rapport à ω)

	Plan	Observateurs	Cryptage	Multimodèles	Conclusion
				0000000	
Exemple 2					

Multimodèle à base de systèmes de Lorenz et Chua

Modèle de base :
$$\begin{cases} \dot{x}_1 = -\sigma x_1 + \sigma x_2\\ \dot{x}_2 = \gamma x_1 - x_2 - x_1 x_3\\ \dot{x}_3 = x_1 x_2 - \beta x_3 \end{cases}$$
 avec $\mu(y(t)) = \frac{1 + \tanh(\omega y(t) + \nu)}{2}$, $\omega = -0.01$, $\nu = 0.2$

	Plan	Observateurs	Cryptage	Multimodèles	Conclusion
				0000000	
Exemple 2					

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Multimodèle à base de systèmes de Lorenz et Chua

Modèle de base :
$$\begin{cases} \dot{x}_1 = -\sigma x_1 + \sigma x_2\\ \dot{x}_2 = \gamma x_1 - x_2 - x_1 x_3\\ \dot{x}_3 = x_1 x_2 - \beta x_3 \end{cases}$$
avec $\mu(y(t)) = \frac{1 + \tanh(\omega y(t) + \nu)}{2}$, $\omega = -0.01$, $\nu = 0.2$

	Plan	Observateurs	Cryptage	Multimodèles	Conclusion
				0000000	
Exemple 2					

Multimodèle à base de systèmes de Lorenz et Chua

Modèle de base :
$$\begin{cases} \dot{x}_1 = -\sigma x_1 + \sigma x_2\\ \dot{x}_2 = \gamma x_1 - x_2 - x_1 x_3\\ \dot{x}_3 = x_1 x_2 - \beta x_3 \end{cases}$$
avec $\mu(y(t)) = \frac{1 + \tanh(\omega y(t) + \nu)}{2}$, $\omega = -0.01$, $\nu = 0.2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Plan	Emetteur	Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	00000000000000	0000000	○○○○○●○	000
Exemple 3						

Multimodèle à retard

Modèle de base :

$$\begin{cases} \dot{x}_1 = -\alpha x_1 + \alpha x_1 - \alpha \delta \tanh(x_1) \\ \dot{x}_2 = x_1 - x_2 + x_3 \\ \dot{x}_3 = -\beta x_2 - \gamma x_3 + \varepsilon \sin(\sigma x_{1\tau}) \end{cases}$$

avec
$$\mu(y) = \frac{1 + \tanh(\omega y)}{2}$$

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Exemple 3						

Multimodèle à retard

Modèle de base :

$$\begin{cases} \dot{x}_1 = -\alpha x_1 + \alpha x_1 - \alpha \delta \tanh(x_1) \\ \dot{x}_2 = x_1 - x_2 + x_3 \\ \dot{x}_3 = -\beta x_2 - \gamma x_3 + \varepsilon \sin(\sigma x_{1\tau}) \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

avec
$$\mu(y) = \frac{1 + \tanh(\omega y)}{2}$$

Introduction	Plan	Emetteur	Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	00000000000000	0000000	○○○○○●○	000
Exemple 3						

Multimodèle à retard

Modèle de base :

$$\begin{cases} \dot{x}_1 = -\alpha x_1 + \alpha x_1 - \alpha \delta \tanh(x_1) \\ \dot{x}_2 = x_1 - x_2 + x_3 \\ \dot{x}_3 = -\beta x_2 - \gamma x_3 + \varepsilon \sin(\sigma x_{1\tau}) \end{cases}$$

avec
$$\mu(y) = \frac{1 + \tanh(\omega y)}{2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	000000000000000000	0000000	000000	000

Synchronisation des multimodèles chaotiques

- Émetteur = multimodèle chaotique
- Récepteur = observateur spécifique :

$$\dot{\hat{x}}(t) = \sum_{i=1}^{p} \mu_i(y(t)) \Big(A_i \hat{x}(t) + f_i(\hat{x}(t)) + \frac{K_i(y(t) - C\hat{x}(t))}{2} \Big)$$

Théorème

S'il existe une matrice symétrique définie positive P, des matrices définies positives Q et Q_i , i = 1, p et p gains K_i tels que, pour i = 1, p:

$$\begin{pmatrix} (A_i - K_iC)^T P + P(A_i - K_iC) + k_{f_i}I + Q_i & P \\ P & -\frac{1}{k_{f_i}}I \end{pmatrix} < 0$$

et

 $Q_i < Q$

alors l'erreur de synchronisation $e(t) = x(t) - \hat{x}(t)$ converge exponentiellement vers zéro, selon la formule $||e(t)|| \leq \rho ||e(0)||e^{-\frac{\nu}{2}t}$ avec $\rho = \sqrt{\frac{\lambda_M(P)}{\lambda_m(P)}}$ et $\nu = \frac{\lambda_m(Q)}{\lambda_M(P)}$

- 日本 - 1 日本 - 1 日本 - 1 日本

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	000000000000000000	0000000	000000	000

Synchronisation des multimodèles chaotiques

- Émetteur = multimodèle chaotique
- Récepteur = observateur spécifique :

$$\dot{\hat{x}}(t) = \sum_{i=1}^{p} \mu_i(y(t)) \Big(A_i \hat{x}(t) + f_i(\hat{x}(t)) + \frac{K_i(y(t) - C\hat{x}(t))}{2} \Big)$$

Théorème

S'il existe une matrice symétrique définie positive P, des matrices définies positives Q et Q_i , i = 1, p et p gains K_i tels que, pour i = 1, p:

$$\begin{pmatrix} (A_i - K_i C)^T P + P (A_i - K_i C) + k_{f_i} I + Q_i & P \\ P & -\frac{1}{k_{f_i}} I \end{pmatrix} < 0$$

et

 $Q_i < Q$

alors l'erreur de synchronisation $e(t) = x(t) - \hat{x}(t)$ converge exponentiellement vers zéro, selon la formule $||e(t)|| \leq \rho ||e(0)||e^{-\frac{\nu}{2}t}$ avec $\rho = \sqrt{\frac{\lambda_M(P)}{\lambda_m(P)}}$ et $\nu = \frac{\lambda_m(Q)}{\lambda_M(P)}$

	Plan	Observateurs	Cryptage	Multimodèles	Conclusion
Plan de la	a présenta				

Choix de l'émetteur chaotique

- Etude du chaos
- Détail de l'émetteur
- 2 Conception du récepteur : synthèse d'observateurs
 - Observateur d'ordre plein
 - Observateur d'ordre réduit

3 Cryptage/décryptage

- Exemples de cryptosystèmes chaotiques
- Conception d'un cryptosystème chaotique

Sécurité de la synchronisation : multimodèles chaotiques

- Exemples
- Synchronisation des multimodèles chaotiques

5 Conclusion et perspectives

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	000000	000
Conclusion						

Cryptosystème chaotique

- problème d'estimation d'état pour une classe de systèmes non linéaires chaotiques à retard
- problème de restauration d'entrées inconnues

Solution proposée : cryptosystème chaotique par modulation de phase

- choix d'un émetteur : système chaotique à retard
- conception du récepteur : synchronisation à base d'observateurs non linéaires
 - observateur d'ordre plein
 - observateur d'ordre réduit
 - observateur robuste
- cryptage : par modulation de phase chaotique, transmission double

extension aux multimodèles chaotiques

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	000000	000
Conclusion						

Cryptosystème chaotique

- problème d'estimation d'état pour une classe de systèmes non linéaires chaotiques à retard
- problème de restauration d'entrées inconnues

Solution proposée : cryptosystème chaotique par modulation de phase

- choix d'un émetteur : système chaotique à retard
- conception du récepteur : synchronisation à base d'observateurs non linéaires
 - observateur d'ordre plein
 - observateur d'ordre réduit
 - observateur robuste
- cryptage : par modulation de phase chaotique, transmission double

extension aux multimodèles chaotiques

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Perspecti	ves					

Sur le plan pratique

- expérimentation : dispositif électronique
- robustesse au bruit de transmission : observateur robuste, tests sur carte dSpace

Sur le plan théorique

- approfondissement des multimodèles
- cas du temps discret
- $\bullet \ \text{extension des résultats} \to \text{diagnostic}$

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	0000000	0000000	000
Perspecti	ves					

Sur le plan pratique

- expérimentation : dispositif électronique
- robustesse au bruit de transmission : observateur robuste, tests sur carte dSpace

Sur le plan théorique

- approfondissement des multimodèles
- cas du temps discret
- $\bullet~$ extension des résultats $\rightarrow~$ diagnostic

	Plan		Observateurs	Cryptage	Multimodèles	Conclusion
000		00000	0000000000000	000000	000000	000

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶