

Set-membership Observation and Zonotopes

Christophe COMBASTEL

- Introduction to state bounding observation
- Zonotopes
- The linear discrete case (academic examples)
- The non linear continuous case (bioreactor)
- Conclusion & future prospects

Fault diagnosis: The usual « FDI » approach

3

Fault Diagnosis = Fault Detection, Isolation (and Identification)

Refined/rough over approximation **→** *High/low sensitivity (guaranteed robustness)*

Introduction

Observation:

5

Data (<i>corrupted</i>)	+	Knowledge (<i>partial</i>)	•	Information (<i>imprecise</i>)
Measurement (<i>noise</i>)	+	Model (<i>modeling errors</i> , <i>disturbances</i>)	→	State (?)

State uncertainty:

- > Not made explicit
- Stochastic context (Kalman filter)

Model of the system (enclosing the real behavior):

■ Known: $A_k, B_k, C_k, D_k, E_k, F_k, u_k, y_k, [x_0] / x_0 \in [x_0]$ ■ Unknown: x_k, v_k, w_k

Goal: $[x_k]$, (smallest) domain such that $x_k \in [x_k]$ is guaranteed.

Compromise (for guarantee to be achieved): \uparrow exactness \Leftrightarrow \uparrow complexity \Leftrightarrow \downarrow outer approximation

Initialization $([x_0] \leftarrow \text{domain s.t. } x_0 \in [x_0])$ For k=1 to k_{max} System at time $k: u_k, y_k$ $[x_{k/k-1}] \leftarrow \text{Prediction}([x_{k-1}])$ $[x_{k/k-1}] \leftarrow \text{Reduction}([x_{k/k-1}])$ $[x_k] \leftarrow \text{Correction}([x_{k/k-1}], y_k, u_k)$ End

Domain representation

Solutions based on domain approximations:

- > Orthotope (i.e. interval vector or boxes)
- Parallelotope
- Ellipsoïd
- Zonotope

Polytope (+simplification) [Walter, Piet-Lahanier]

[Chisci, Garulli, Zappa] [Fogel, Huang, Durieu, Lesecq] [Kühn] (ODE, wrapping effect)

- Introduction to state bounding observation
- Zonotopes
- The linear discrete case (academic examples)
- The non linear continuous case (bioreactor)
- Conclusion & future prospects

Zonotopes : definitions

Zonotope = Minkowski sum of straight line segments

$$[Z] = [S_1] + \dots + [S_p]$$

[S_i] = c_i + r_i.\[\Box] \Box \Box = [-1;+1]

Zonotope = Linear image of a <u>p-hypercube</u> in a *n*-space (abstract space) $[Z] = c + R.\Box^{p}$

 $\triangleright R$

$$[Z] \subset \mathfrak{R}^n \qquad c \in \mathfrak{R}^n \qquad R \in \mathfrak{R}^{n \times p}$$

http://www.decatur.de/wolfgang/zono/index.html

A solution: outer approx. of the intersection by a zonotope

$$(c_i + \bigstar Z_i) = (c_1 + \bigstar Z_1) \cap (c_2 + \bigstar Z_2)$$

Singular Value Decomposition and simple matrix operations.

- Introduction to state bounding observation
- Zonotopes
- The linear discrete case (academic examples)
- The non linear continuous case (bioreactor)
- Conclusion & future prospects

Model of the system (enclosing the real behavior):

■ Known: $A_k, B_k, C_k, D_k, E_k, F_k, u_k, y_k, [x_0] / x_0 \in [x_0]$ ■ Unknown: x_k, v_k, w_k

Goal: $[x_k]$, (smallest) domain such that $x_k \in [x_k]$ is guaranteed.

Initialization $([x_0] \leftarrow \text{domain s.t. } x_0 \in [x_0])$ For k=1 to k_{max} System at time $k: u_k, y_k$ $[x_{k/k-1}] \leftarrow \text{Prediction}([x_{k-1}])$ $[x_{k/k-1}] \leftarrow \text{Reduction}([x_{k/k-1}])$ $[x_k] \leftarrow \text{Correction}([x_{k/k-1}], y_k, u_k)$ End

18

One step prediction

Recurrence:

> Hypothesis:
$$x_k \in [x_k]$$
 $[x_k] = c_k + A_k$
> System: $x_{k+1} = A_k \cdot x_k + B_k \cdot u_k + E_k \cdot v_k$ $v_k \in \Box^n$
> Therefore: $x_{k+1} \in [x_{k+1/k}]$ \downarrow $\begin{cases} c_{k+1/k} = A_k \cdot c_k + B_k \cdot u_k \\ R_{k+1/k} = [A_k R_k \quad E_k] \end{cases}$

Recurrence development (with prediction only):

19

$$\begin{split} R_0 \\ R_1 &= \bigstar [A_0 R_0 \quad E_0] \\ R_2 &= \bigstar [A_1 A_0 R_0 \quad A_1 E_0 \quad E_1] \\ R_3 &= \bigstar [A_2 A_1 A_0 R_0 \quad A_2 A_1 E_0 \quad A_2 E_1 \quad E_2] \\ \text{etc...} \end{split}$$

Exact solution, but increasing complexity...
 Necessity to reduce the domain complexity

Initialization ($[x_0] \leftarrow$ domain s.t. $x_0 \in [x_0]$) For k=1 to k_{max} System at time $k: u_k, y_k$ $[x_{k/k-1}] \leftarrow \text{Prediction}([x_{k-1}])$ $[x_{k/k-1}] \leftarrow \text{Reduction}([x_{k/k-1}])$ $[x_k] \leftarrow \text{Correction}([x_{k/k-1}], y_k, u_k)$ End

Sort on decreasing Euclidian norm: $||r_i|| \ge ||r_{i+1}||$

Reduction:

$$Red(\bigstar R) = \bigstar \left[first (nd-n) col. \right] + \blacksquare \left[other col. \right]$$
$$Red(\bigstar R) = \bigstar \left[first (nd-n) col. n col. \right]$$

Reduction : Example

Reduction of a 6-zonotope into a 5-zonotope:

Initialization $([x_0] \leftarrow \text{domain s.t. } x_0 \in [x_0])$ For k=1 to k_{max} System at time $k: u_k, y_k$ $[x_{k/k-1}] \leftarrow \text{Prediction}([x_{k-1}])$ $[x_{k/k-1}] \leftarrow \text{Reduction}([x_{k/k-1}])$ $[x_k] \leftarrow \text{Correction}([x_{k/k-1}], y_k, u_k)$ End

Measurements: Sensors & Domain

y(t) = C(t).x(t) + D(t).u(t) + F(t).w(t) \Leftrightarrow $\begin{bmatrix} y_c(t) \\ y_d(t) \end{bmatrix} = \begin{bmatrix} C_c(t) \\ C_d(t) \end{bmatrix}.x(t) + \begin{bmatrix} D_c(t) \\ D_d(t) \end{bmatrix}.u(t) + \begin{bmatrix} F_c(t) & 0 \\ 0 & F_d(t) \end{bmatrix} \begin{bmatrix} w_c(t) \\ w_d(t) \end{bmatrix}$

Correction:

25

Application to a 3rd order discrete linear model with various observability properties

Computation of state bounds Interval hull:

 $G_1(z) = \frac{(z-2)}{(z-0.95)} \cdot \frac{(z-0.7)}{(z-z_0).(z-\overline{z}_0)}$

Projection of the zonotope in the plane (x_1, x_2) :

Domain growth in the direction of the non obs. space

Introduction to state bounding observation

Zonotopes

The linear discrete case (academic examples)

The non linear continuous case (bioreactor)

Conclusion & future prospects

Model of the system (enclosing the real behavior):

 $\dot{x}(t) = f(x(t), u(t), v(t))$ y(t) = C.x(t) + D.u(t) + F.w(t)

$$v(t) \in [-1;+1]^r$$

 $w(t) \in [-1;+1]^m$

Sampling:

32

▶ Notations: $x_k = x(kT_s), ...$ ▶ Zero order hold: $u(t) = u_k, t \in [kT_s; (k+1)T_s]$

Known: $[x_0] / x(0) \in [x_0]$ u_k, y_k $\begin{cases} f(.) \in C^2, \text{ local. Lipschitz} \\ C, D, F \end{cases}$ (*F* full line rank) Unknown: x(t), v(t), w(t)

Goal: $[x_k]$, (smallest) domain such that $x_k \in [x_k]$ is guaranteed.

One step prediction

Prediction:

33

From:	$[x_k] = c_k + \mathbf{\Phi} R_k$	$x_k \in [x_k]$
➢ And:	$\dot{x}(t) = f(x(t), u(t), v(t))$	$v(t) \in \left[-1;+1\right]^n$
Compute:	$[x_{k+1/k}] = c_{k+1/k} + \mathbf{\Phi} R_{k+1/k}$	$x_{k+1} \in [x_{k+1/k}]$

How ?

Discretization
 Linearization
 Inclusion of the linearization error
 Inclusion of the discretization error

 $\dot{x}(t) = f(x(t), u(t), v(t))$

Discretization: Euler (for the sake of clarity)

Inclusion:

 $x_{k+1} \in [x_k] + f([x_k], u_k, [v_k]).T_s + [ed_k]$

 $[x_k] = c_k + \bigotimes R_k$ $[v_k] = [-1;+1]^r$ $[ed_k] = cd_k + \bigotimes Rd_k \quad \longleftarrow \text{ Inclusion of the discretization error at time } k$

$$x_{k+1} \in \left\{c_k + R_k \cdot s + f(c_k + R_k \cdot s, u_k, v) \cdot T_s, \quad s \in [-1;+1]^p, v \in [-1;+1]^r\right\} + [ed_k]$$

 $x_{k+1} \in \left\{c_k + R_k \cdot s + f(c_k + R_k \cdot s, u_k, v) \cdot T_s, \quad s \in [-1;+1]^p, v \in [-1;+1]^r\right\} + [ed_k]$

Linearization of *f* around $(c_k, u_k, 0)$:

$$f(c_k + R_k . s, u_k, v) = f(c_k, u_k, 0) + L_k . R_k . s + M_k . v + el_k (R_k . s, v)$$

$$L_k = \frac{\partial f(x, u, v)}{\partial x} \Big|_{\substack{(x, u, v) = \\ (c_k, u_k, 0)}} M_k = \frac{\partial f(x, u, v)}{\partial v} \Big|_{\substack{(x, u, v) = \\ (c_k, u_k, 0)}}$$

 $[el_k] = cl_k + \bigoplus Rl_k \longleftarrow$ Inclusion of the linearization error at time *k*

Prediction:

35

$$\begin{aligned} x_{k+1} &\in [x_{k+1/k}] = c_{k+1/k} + \bigotimes R_{k+1/k} \\ c_{k+1/k} &= c_k + f(c_k, u_k, 0) \cdot T_s + cl_k \cdot T_s + cd_k \\ R_{k+1/k} &= [(I + L_k \cdot T_s) \cdot R_k \quad M_k \cdot T_s \quad Rl_k \cdot T_s \quad Rd_k] \end{aligned}$$

Inclusion of the linearization error $\begin{array}{c} \text{Linearization error (*):} \\ f(c_k + R_k .s, u_k) = f^{[0]} + f^{[1]}(R_k .s) + f^{[2]}(R_k .s) + f_{[3]}(R_k .s) \\ \hline \\ \text{Constant} \\ \text{Linear} \\ \hline \\ \text{Quadratic} \\ \text{Higher order} \\ \hline \\ \text{Higher order} \\ \hline \\ \hline \\ \text{Inclusion:} \\ \hline \\ \hline \\ \hline \\ el_k \end{bmatrix} = cl_k + \bigstar Rl_k = \left(c_k^{[2]} + \bigstar R_k^{[2]}\right) + \left(c_{[3]k} + \bigstar R_{[3]k}\right)$

Quadratic terms : disappear but linear dependence between similar quadratic terms is kept.

Higher order terms : expressed as a non linear function of linear forms + use of interval arithmetic.

(*) When f depends on v, $c_k \leftarrow [c_k 0]^T$, $R_k \leftarrow [R_k 0; 0 I]$, $s \leftarrow [s v]^T$.

Quadratic form related to the Taylor dev. of f_q around (c_k, u_k) :

$$f_q^{[2]}(c_k, R_k.s, u_k) = (R_ks)^T Q_q(c_k, u_k) (R_ks)$$

n×*n* matrix obtained from a formal calculus software

$$= s^T \cdot \underline{Q}_{q,k} \cdot s \qquad \underline{Q}_{q,k} = R_k^T \cdot Q_q(c_k, u_k) \cdot R_k$$

$$= \sum_{i} \underbrace{Q}_{q,k,ii} (s_{i}^{2}) + \sum_{i < j} (\underbrace{Q}_{q,k,ij} + \underbrace{Q}_{q,k,ji}) (s_{i}s_{j})$$

$$s_{i}^{2} \in [0;+1] = \frac{1}{2} + \frac{[-1;+1]}{2} \qquad s_{i}s_{j} \in [-1;+1]$$

Result:

Consequences:

Quadratic terms disappear

Linear dependence between similar quadratic terms is kept

An illustrative example: (general case in the paper)

39

 $\forall i, s_i \in [-1;+1]$

> Quadratic terms disappear

> Linear dependence between similar quadratic terms is kept

Image of a zonotope by a linear form = Interval

Rest expressed as a non linear function of linear forms:

$$f_{q[3]}(c_k, R_k.s, u_k) = \widetilde{f}_{q[3]}(c_k, \psi(c_k, u_k), R_k.s, u_k)$$

Matrix (formal calculus can be used) Remark: several solutions for a given application

Goal: take linear dependence into account as much as possible before interval inclusion

M

$$f_{q[3]}(c_k, R_k.s, u_k) \in \widetilde{f}_{q[3]}(c_k, \blacksquare(\psi(c_k, u_k).R_k), u_k)$$

Result (use of interval arithmetic):

$$[f_{[3]}(c_k, R_k.s, u_k)] \subseteq c_{[3]k} + \blacklozenge R_{[3]k}$$

Application Model of a bio-reactor in fed-batch mode (Dochain, 2001): $S \rightarrow X$ $F_{out} = 0$ $\begin{cases} u = D = F_{in} / V \\ \begin{bmatrix} \dot{X} \\ \dot{S} \\ \dot{V} \\ \dot{M} \\ \dot{K} \end{bmatrix} = \dot{x} = f(x, u) = \begin{bmatrix} (\mu - D) \cdot X \\ -\mu \cdot X / Y_{xs} + D \cdot (S_{in} - S) \\ D \cdot V - F_{out} \\ 0 \\ 0 \end{bmatrix} \downarrow \text{Law of Monod:} \\ \mu = \mu(K, M, S) = \frac{M \cdot S}{K + S} \\ \downarrow \text{State extension:} \\ \text{parameter estimation} \\ y = S + F \cdot w \quad w \in [-1; +1] \end{cases}$

41

$\lfloor x(0) \rfloor$: Initial state (and parametric) uncertainty

S (resp. X) : concentration of the substrate (resp. biomass).

D: dilution rate. V: volume. S_{in} : input concentration of the substrate.

 Y_{xs} : efficiency coefficient for the growth of the biomass on the substrate.

 μ : specific growth rate of the biomass. F_{in} , F_{out} : input and output flow.

Inclusion of the linearization error

Higher order terms:

$$f_{[3]}(c_k, R_k.s, u_k) = \begin{bmatrix} (\mu X)_{[3]}(c_k, R_k.s) \\ -(\mu X)_{[3]}(c_k, R_k.s) / Y_{xs} \\ 0_{3\times 1} \end{bmatrix}$$
$$\mu X(x) = \frac{M.S.X}{K+S}$$

Inclusion of $\mu X_{[3]}$: $[\mu X_{[3]}(c_k, R_k.s)] = c_{I,k} + \bigoplus R_{I,k}$

Result:

42

$$[f_{[3]}(c_k, R_k.s, u_k)] \subseteq c_{[3]k} + \blacklozenge R_{[3]k}$$

$$c_{[3]k} = \begin{bmatrix} c_{I,k} \\ -c_{I,k} / Y_{xs} \\ 0_{3\times 1} \end{bmatrix} \qquad R_{[3]k} = \begin{bmatrix} R_{I,k} \\ -R_{I,k} / Y_{xs} \\ 0_{3\times 1} \end{bmatrix}$$

Inclusion of
$$\mu X_{[3]}$$
: $\mu X(x + \delta x) = \frac{(M + \delta M).(S + \delta S).(X + \delta X)}{(K + \delta K) + (S + \delta S)}$ $x = \begin{bmatrix} x \\ S \\ V \\ M \\ K \end{bmatrix}$

Expression of $\mu X_{[3]}$ as a non linear function of linear forms:

$$\mu X_{[3]}(x, \delta x) = \frac{(\Psi_1(x) \cdot \delta x) \cdot (\Psi_2(x) \cdot \delta x) \cdot (\Psi_3(x) \cdot \delta x)}{(\Psi_4(x) \cdot x)^3 \cdot (\Psi_4(x) \cdot (x + \delta x))}$$

Linear forms:

$$\Psi_{1}(x) = \begin{bmatrix} 0 & K & 0 & 0 & -S \end{bmatrix}$$

$$\Psi_{2}(x) = \begin{bmatrix} (K+S) & -X & 0 & 0 & -X \end{bmatrix}$$

$$\Psi_{3}(x) = \begin{bmatrix} 0 & -M & 0 & (K+S) & -M \end{bmatrix}$$

$$\Psi_{4}(x) = \Psi_{4} = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

 $\begin{bmatrix} X \end{bmatrix}$

Interval inclusion:

43

$$\begin{cases} x = c_k \\ \delta x = R_k.s \end{cases} \longrightarrow I_{i,k} = \blacksquare(\Psi_i(c_k).R_k) \\ [\mu X_{[3]}(c_k, R_k.s)] = \frac{I_{1,k}.I_{2,k}.I_{3,k}}{(\Psi_4.c_k)^3.(\Psi_4.c_k + I_{4,k})} \end{cases}$$

Euler scheme: $ed_k = x_{k+1} - x_k - f(x_k, u_k, v_k) T_s$

Empirical evaluation (simulation):

44

Dependency is taken into account, but not the dynamic evol.

$$ed_k$$
] = cd_k + $\mathbf{A}Rd_k$ $cd_k = 0$ $Rd_k = \begin{bmatrix} 0.025 & 0.00125 & 0_{1\times 3} \\ -0.055 & 0.003 & 0_{1\times 3} \\ 0_{3\times 1} & 0_{3\times 1} & 10^{-5}.I_{3\times 3} \end{bmatrix}$

Simulation results: context

	Observation	Identification 1	Identification 2
Domaine initial $[x_0]$			
X	[0;40]	0.53 ± 0.05	0.5 ± 0.001
S	[0;20]	14.9 ± 0.25	15 ± 0.001
V	[0.5 ; 2]	[0.5 ; 2]	[0.5 ; 2]
M	[0.085 ; 0.105]	[0.01;1]	0.1 ± 0.001
K	[1.9;2.4]	[1.5;3]	[1.5;3]
Instrumentation :			
X	non mesuré	$\pm 0.05 (T_p=20s)^{(*)}$	$\pm 0.01 \ (T_e = 1s)$
S	± 0.25 (<i>T_e</i> =1s)	$\pm 0.25 \ (T_e = 1s)$	$\pm 0.01 \ (T_e = 1s)$

Scenario « Observation » : Projection in the (X, S) plane of $[x_k]$ at k = 50

- Introduction to state bounding observation
- Zonotopes
- The linear discrete case (academic examples)
- The non linear continuous case (bioreactor)
- Conclusion & future prospects

Conclusion:

49

- Observer handling dependency in uncertain non-linear systems with no iterative optimization, no bissection, no facets or vertices enum.
- Need for a refined evaluation of uncertainties -> Precision of estimation

Future prospects:

- Dynamic inclusion of the discretization error
- Quantifying the pessimism
- Comparisons with other approaches
- Fault diagnosis

Related publications:

ECC'2003, NOLCOS'2004, JESA'2005 ? (revised, not accepted at present)