Subspace-based fault detection and isolation for structural health monitoring

Michael Döhler and Laurent Mevel

Inria Centre Rennes - Bretagne Atlantique, Rennes

I4S Research Team

8 December 2014

Outline

- Motivation: FDI for structural health monitoring
- Asymptotic local approach for change detection
- 3 Damage detection
- 4 Damage localization
- 5 Damage quantification
- 6 Conclusions

Outline

Motivation: FDI for structural health monitoring

- 2 Asymptotic local approach for change detection
- 3 Damage detection
- 4 Damage localization
- Damage quantification
- 6 Conclusions

Motivation: FDI for structural health monitoring

Context

- Fault detection and isolation in structural engineering
- Vibration monitoring of civil, aeronautical or mechanical structures

FDI problem

- Fault detection: detect structural damage
- Fault isolation: locate damage in the structure

How?

Hypothesis tests on parameterized Gaussian residual vector

- zero mean in reference state
- non-zero mean in faulty state

Models

Stationary linear dynamical system

$$\mathcal{M}\ddot{z}(t) + \mathcal{C}\dot{z}(t) + \mathcal{K}z(t) = v(t)$$

... observed at some sensor coordinates

Discrete-time state space model for identification

$$\begin{cases} x_{k+1} = A x_k + v_k \\ y_k = C x_k + w_k \end{cases}$$

- "Input" vk is unmeasured non-stationary noise
- Model order is large (in the 100's)

Parameters

Damage produces change in structural properties and modal parameters

Structural parameters:

- Finite element model of a structure
- E.g. element mass, element stiffness
- Model-based parameters, not from measurements

 $\mathcal{M}(\theta)\ddot{z}(t) + \mathcal{C}\dot{z}(t) + \mathcal{K}(\theta)z(t) = v(t)$

Modal parameters:

- Natural frequencies, damping ratios, mode shapes
- Found in eigenstructure of (C, A)
- Can be obtained from system identification (e.g. Stochastic Subspace Identification)

$$\begin{cases} x_{k+1} = A(\theta) x_k + v_k \\ y_k = C(\theta) x_k + w_k \end{cases}$$

Faults

Damage characterization

- Damage detection: is there a change in *θ*?
 - θ = modal or structural parameter
 - Fault detection

• Damage localization: which components of θ changed?

- θ = local structural parameter
- Fault isolation

Damage quantification: estimate Δθ

Outline

Motivation: FDI for structural health monitoring

2 Asymptotic local approach for change detection

- 3 Damage detection
- 4 Damage localization
- Damage quantification
- 6 Conclusions

Ingredients

- Gaussian residual function (computed on data, parameterized by θ)
- Olose hypothesis
- Generalized likelihood ratio test

Benveniste, Basseville & Moustakides, *The asymptotic local approach to change detection and model validation*, IEEE Transactions on Automatic Control, AC-32(7):583-592, 1987.

Step 1: residual definition

• Block Hankel matrix of correlations $R_i = \mathbf{E} \left(\mathbf{y}_k \mathbf{y}_{k-i}^T \right)$

$$\mathcal{H} = \begin{bmatrix} R_1 & R_2 & \dots & R_q \\ R_2 & R_3 & \dots & R_{q+1} \\ \vdots & \ddots & \dots & \vdots \\ R_{p+1} & \ddots & \dots & R_{p+q} \end{bmatrix} = \mathcal{OC}, \quad \mathcal{O} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^p \end{bmatrix}$$

• Left null space *S* in reference state: $S^T \mathcal{O} = S^T \mathcal{H} = 0$ $\Rightarrow \mathbf{E}_{\theta}(S^T \widehat{\mathcal{H}}) = 0 \text{ iff } \theta = \theta_0$

Define residual

$$\zeta_{N} = \sqrt{N} \operatorname{vec}(S^{T} \widehat{\mathcal{H}})$$

with estimate $\widehat{\mathcal{H}}$ from $\widehat{R}_i = \frac{1}{N} \sum_{k=1}^{N} y_k y_{k-i}^T$

Basseville, Abdelghani & Benveniste, Subspace-based fault detection algorithms for vibration monitoring, Automatica, 36(1):101-109, 2000.

Step 2: close hypotheses

$$\begin{split} \mathbf{H}_0: \ \theta &= \theta_0 \qquad \text{(reference system)} \\ \mathbf{H}_1: \ \theta &= \theta_0 + \delta/\sqrt{N} \quad \text{(faulty system)} \end{split}$$

δ : unknown but fixed

Central Limit Theorem

$$\zeta_{N} \stackrel{d}{\longrightarrow} \begin{cases} \mathcal{N}(0, \Sigma(\theta_{0})) & \text{under } \mathbf{H}_{0} \\ \mathcal{N}(\mathcal{J}(\theta_{0}) \, \delta, \Sigma(\theta_{0})) & \text{under } \mathbf{H}_{1} \end{cases}$$

- "Local interpretation": $\delta = \sqrt{N}(\theta \theta_0)$
 - $(\theta \theta_0)$ small, *N* large
 - $(\theta \theta_0)$ not so small, *N* not so large

Step 3: generalized likelihood ratio test

... adapted for detection / isolation

Outline

1 Motivation: FDI for structural health monitoring

2 Asymptotic local approach for change detection

3 Damage detection

- 4 Damage localization
- 5 Damage quantification
- 6 Conclusions

$$\zeta_{N} \stackrel{d}{\longrightarrow} \left\{ \begin{array}{ll} \mathcal{N}(\mathbf{0}, \Sigma(\theta_{0})) & \text{under } \mathbf{H}_{0} \\ \mathcal{N}(\mathcal{J}(\theta_{0}) \, \delta, \Sigma(\theta_{0})) & \text{under } \mathbf{H}_{1} \end{array} \right.$$

Generalized likelihood ratio test

$$\chi_N^2 = \zeta_N^T \widehat{\Sigma}^{-1} \widehat{\mathcal{J}} (\widehat{\mathcal{J}}^T \widehat{\Sigma}^{-1} \widehat{\mathcal{J}})^{-1} \widehat{\mathcal{J}}^T \widehat{\Sigma}^{-1} \zeta_N$$

- χ^2 distributed, dim(θ_0) degrees of freedom
- Non-centrality parameter: $\delta^T F \delta$, $F = \mathcal{J}^T \Sigma^{-1} \mathcal{J}$
- Compare χ^2_N to a threshold for decision

Numerical problems for test computation

$$\chi_N^2 = \zeta_N^T \widehat{\Sigma}^{-1} \widehat{\mathcal{J}} (\widehat{\mathcal{J}}^T \widehat{\Sigma}^{-1} \widehat{\mathcal{J}})^{-1} \widehat{\mathcal{J}}^T \widehat{\Sigma}^{-1} \zeta_N$$

- $\widehat{\Sigma}$ rank deficient or badly conditioned
- χ^2_N too unstable

Numerically robust computation

•
$$\Sigma = \Sigma^{1/2} (\Sigma^{1/2})^T$$
, get $\widehat{\Sigma}^{1/2}$ directly from data

2
$$(\widehat{\Sigma}^{1/2})^{\dagger}\widehat{\mathcal{J}}=QR$$

3)
$$\chi_N^2 = \alpha^T \alpha$$
 where $\alpha = Q^T (\widehat{\Sigma}^{1/2})^{\dagger} \zeta_N$

Zhang & Basseville, Advanced numerical computation of chi2-tests for fault detection and isolation, SAFEPROCESS, 2003.

Döhler & Mevel, Robust subspace based fault detection, IFAC World Congress, 2011.

Application: S101 Bridge

Damage detection on S101 Bridge

- In FP7 IRIS: Large scale progressive damage test as benchmark for damage identification
- 4 days of measurements with different damage actions
 - Lowering a column in 3 steps
 - Cutting the prestressing cables

Döhler, Hille, Mevel & Rücker, Structural health monitoring with statistical methods during progressive damage test of S101 Bridge, Engineering Structures 69:183-193, 2014.

Application: S101 Bridge

Application: S101 Bridge

Commercial software

ARTeMIS Damage Detection Plugin, Structural Vibration Solutions A/S

What if ambient excitation properties change?

$$\begin{cases} x_{k+1} = A x_k + v_k \\ y_k = C x_k + w_k \qquad \zeta_N = \sqrt{N} \operatorname{vec}(S^T \widehat{\mathcal{H}}) \end{cases}$$

 $Q = \mathbf{E}(\mathbf{v}_k \mathbf{v}_k^T)$ changes $\Rightarrow \widehat{\mathcal{H}}$ changes $\Rightarrow \chi_N^2$ changes without any change in the structural parameters

Solutions

- Recompute $\widehat{\Sigma}$ on tested dataset
 - Computationally expensive
 - Often more data available in reference state than in possibly damaged state
- NEW: define residual vector robust to excitation changes

Döhler & Mevel, Subspace-based fault detection robust to changes in the noise covariances, Automatica 49(9): 2734-2743, 2013.

Döhler, Mevel & Hille, Subspace-based damage detection under changes in the ambient excitation statistics, Mechanical Systems and Signal Processing 45(1):207-224, 2014.

Definition of residual robust to excitation change

Instead of using $\widehat{\mathcal{H}}$, take orthogonal basis of its image • SVD

$$\widehat{\mathcal{H}} = \begin{bmatrix} \widehat{U}_1 & \widehat{U}_0 \end{bmatrix} \begin{bmatrix} \widehat{\Delta}_1 & 0 \\ 0 & \widehat{\Delta}_0 \end{bmatrix} \begin{bmatrix} \widehat{V}_1^T \\ \widehat{V}_0^T \end{bmatrix}, \ \widehat{\Delta}_0 \approx 0$$

Properties in reference state do not change

$$\mathcal{S}^{T}\widehat{\mathcal{H}}^{(0)} \approx \mathcal{S}^{T}\widehat{U}_{1}^{(0)} pprox 0$$

Define residual vector

$$\xi_N = \sqrt{N} \operatorname{vec}(S^T \widehat{U}_1)$$

• 6 DOF simulated mass-spring chain

- 3 different structural states
 - reference state
 - 5% stiffness reduction in spring 2
 - 10% stiffness reduction in spring 2
- Ambient excitation with different covariances $Q = \mathbf{E}(v_k v_k^T)$

•
$$Q = I_6$$

•
$$Q = 4^2 I_6$$

•
$$Q = 0.25^2 I_6$$

• $Q = diag(1, 2, 3, 4, 5, 6)^2$

Residual $\zeta_N = \sqrt{N} \operatorname{vec}(S^T \widehat{\mathcal{H}}), \widehat{\Sigma}_{\zeta}$ from reference state

Residual $\xi_N = \sqrt{N} \operatorname{vec}(S^T \widehat{U}_1), \widehat{\Sigma}_{\xi}$ from reference state

- Jacket-like steel frame structure
- Damage: 1, 2, 3, 5 or 7 adjacent bolts were unscrewed
 - 3 loose bolts \approx reduction of bending stiffness by 3%
 - 7 loose bolts \approx reduction of bending stiffness by 30%
- Excitation: white noise at three different levels
 - Full scale level
 - 5 dB reduction (≈0.56% of amplitude)
 - 10 dB reduction (≈0.31% of amplitude)
- Signals were measured for 16.4 s at 2500 Hz

Residual $\zeta = \sqrt{N} \operatorname{vec}(S^T \widehat{\mathcal{H}}), \widehat{\Sigma}_{\zeta}$ from reference state

Residual $\xi = \sqrt{N} \operatorname{vec}(S^T \widehat{U}_1), \widehat{\Sigma}_{\xi}$ from reference state

Outline

1 Motivation: FDI for structural health monitoring

- 2 Asymptotic local approach for change detection
- 3 Damage detection
- 4 Damage localization
- 5 Damage quantification
- 6 Conclusions

Problem setting

Given: structural parameter vector θ , Gaussian residual vector ζ

Hypotheses

$$\begin{array}{ll} \mathbf{H}_{0}: \ \theta = \theta_{0} & (\text{reference system}) \\ \mathbf{H}_{1}: \ \theta = \theta_{0} + \delta/\sqrt{N} & (\text{faulty system}) \end{array}$$

Residual distribution

$$\zeta(heta) \sim egin{cases} \mathcal{N}\left(0,\Sigma
ight) & ext{ under } \mathbf{H}_{0} \ \mathcal{N}\left(\mathcal{J}\,\delta,\Sigma
ight) & ext{ under } \mathbf{H}_{1} \end{cases}$$

- δ : parameter change
- \mathcal{J}, Σ : sensitivity and covariance of residual vector

Which parts of θ changed, i.e. which parts of δ are \neq 0?

Problem setting

Isolation tests

- Consider different partitions of the vector $\boldsymbol{\delta}$ into two subvectors
- For each partition: decide if the first subvector is zero or not

$$\delta = \begin{bmatrix} \delta_{\mathsf{a}} \\ \delta_{\mathsf{b}} \end{bmatrix}$$

Corresponding partitions

$$\mathcal{J} = \begin{bmatrix} \mathcal{J}_{a} & \mathcal{J}_{b} \end{bmatrix}$$
$$F \stackrel{\text{def}}{=} \mathcal{J}^{T} \Sigma^{-1} \mathcal{J} = \begin{bmatrix} \mathcal{J}_{a}^{T} \Sigma^{-1} \mathcal{J}_{a} & \mathcal{J}_{a}^{T} \Sigma^{-1} \mathcal{J}_{b} \\ \mathcal{J}_{b}^{T} \Sigma^{-1} \mathcal{J}_{a} & \mathcal{J}_{b}^{T} \Sigma^{-1} \mathcal{J}_{b} \end{bmatrix} = \begin{bmatrix} F_{aa} & F_{ab} \\ F_{ba} & F_{bb} \end{bmatrix}$$

F ... Fisher information of parameter θ in residual $\zeta(\theta)$

Sensitivity test

The test

• Assume $\delta_b = 0$, thus $\zeta \sim \mathcal{N} \left(\mathcal{J}_a \delta_a, \Sigma \right)$

GLR test

$$t_{\text{sens}} = \zeta^T \Sigma^{-1} \mathcal{J}_a \left(\mathcal{J}_a^T \Sigma^{-1} \mathcal{J}_a \right)^{-1} \mathcal{J}_a^T \Sigma^{-1} \zeta$$

Properties

- χ^2 distributed with dim(θ_a) degrees of freedom
- Non-centrality parameter $\delta_a^T F_{aa} \delta_a$, if $\delta_b = 0$ is true
- Compare *t*_{sens} to a threshold for decision

Minmax test

The test

- Replace δ_b by least favorable value for decision about δ_a
- Define partial residuals $\zeta_a \stackrel{\text{def}}{=} \mathcal{J}_a^T \Sigma^{-1} \zeta$, $\zeta_b \stackrel{\text{def}}{=} \mathcal{J}_b^T \Sigma^{-1} \zeta$
- Robust residual

$$\zeta_a^* \stackrel{\text{def}}{=} \zeta_a - F_{ab} F_{bb}^{-1} \zeta_b \sim \mathcal{N} \left(F_a^* \, \delta_a, \ F_a^* \right)$$

GLR test

$$t_{\rm mm} = \zeta_a^{*T} F_a^{*-1} \zeta_a^*$$

Properties

- χ^2 distributed with dim(θ_a) degrees of freedom
- Non-centrality parameter $\delta_a^T F_a^* \delta_a$, independently of δ_b
- Compare $t_{\rm mm}$ to a threshold for decision

Döhler, Mevel & Hille, Efficient computation of minmax tests for fault isolation and their application to structural damage localization, IFAC World Congress, 2014.

Damage localization

Damage localization

- Each structural parameter θ_i in $\theta = \begin{bmatrix} \theta_1 & \theta_2 & \dots & \theta_{n_\theta} \end{bmatrix}^T$ corresponds to an element of a structure
- For each parameter θ_i , perform FDI test
- Damage is located at elements i for which test reacts

Test case

- 8 elements, 4 sensors
- Damage: reduction of spring stiffness in ...
 - element 4 (by 10%)
 - elements 2 (by 5%) and 4 (by 10%)
 - elements 3 (by 5%) and 4 (by 10%)
- Generation of $N = 100\,000$ acceleration samples from random excitation, 5% measurement noise

Local approach Detection Localization Quantification

Application: simulated mass-spring chain

Sensitivity tests (left) and minmax tests (right) for 10% damage in element 4.

Sensitivity (left) and minmax tests (right) for 5% damage in element 2 and 10% damage in element 4.

Sensitivity (left) and minmax tests (right) for 5% damage in element 3 and 10% damage in element 4.

Outline

- 1 Motivation: FDI for structural health monitoring
- Asymptotic local approach for change detection
- 3 Damage detection
- 4 Damage localization
- 5 Damage quantification
- 6 Conclusions

Damage quantification

Estimate δ_a for parameters θ_a whose "localization tests" reacted

Based on sensitivity test...

• Given (assuming $\delta_b = 0$):

 $\zeta \sim \mathcal{N} \left(\mathcal{J}_{a} \delta_{a}, \Sigma \right)$

• $\widehat{\delta}_a^{\text{sens}} \stackrel{\text{def}}{=} (\mathcal{J}_a^T \Sigma^{-1} \mathcal{J}_a)^{-1} \mathcal{J}_a^T \Sigma^{-1} \zeta$, then:

$$\widehat{\delta}_{a}^{\mathrm{sens}} \sim \mathcal{N}\left(\delta_{a}, \mathcal{F}_{aa}^{-1}\right)$$

Damage quantification

Based on minmax test...

• Given:

$$\zeta_a^* \sim \mathcal{N}\left(F_a^* \,\delta_a, \ F_a^*\right)$$

•
$$\widehat{\delta}_a^{\text{mm}} \stackrel{\text{def}}{=} (F_a^*)^{-1} \zeta_a^*$$
, then

$$\widehat{\delta}_a^{\mathrm{mm}} ~\sim~ \mathcal{N}(\delta_a, (F_a^*)^{-1})$$

Döhler & Mevel, Fault isolation and quantification from Gaussian residuals with application to structural damage quantification, submitted to SAFEPROCESS, 2015.

Test case

- 8 elements, 4 sensors
- Damage: reduction of spring stiffness in ...
 - element 4
 - elements 2 and 4
 - elements 3 and 4
 - ... for different damage extents
- Generation of $N = 100\,000$ acceleration samples from random excitation, 5% measurement noise

$$\begin{array}{c} \mathbf{k}_{1} \\ \mathbf{w}_{1} \\ \mathbf{m}_{1} \end{array} \begin{array}{c} \mathbf{k}_{2} \\ \mathbf{m}_{2} \end{array} \begin{array}{c} \mathbf{k}_{3} \\ \mathbf{m}_{3} \end{array} \begin{array}{c} \mathbf{k}_{4} \\ \mathbf{w}_{4} \\ \mathbf{m}_{3} \end{array} \begin{array}{c} \mathbf{k}_{4} \\ \mathbf{w}_{4} \\ \mathbf{m}_{4} \end{array} \begin{array}{c} \mathbf{k}_{7} \\ \mathbf{w}_{4} \\ \mathbf{m}_{7} \end{array} \begin{array}{c} \mathbf{k}_{8} \\ \mathbf{w}_{8} \\ \mathbf{m}_{8} \end{array} \end{array}$$

Local approach Detection Localization Quantification

Application: simulated mass-spring chain

Quantification of different damage extents in element 4.

Quantification of different damage extents in elements 2 and 4 (left), 3 and 4 (right).

Outline

- 1 Motivation: FDI for structural health monitoring
- Asymptotic local approach for change detection
- 3 Damage detection
- 4 Damage localization
- 5 Damage quantification

Conclusions

- Common statistical framework for *damage detection*, *localization* and *quantification*
 - Hypotheses testing on asymptotically Gaussian residuals
 - Residual based on subspace properties
- Required parameterizations:
 - Detection: modal parameters (from data)
 - Localization, quantification: structural parameters (from FE model)
- Suitable framework for structural health monitoring
 - Output-only measurements, no inputs
 - Large systems
 - Numerical robustness of tests and estimators
- Different maturity of approaches
 - Detection: successful on real structures in the field
 - Localization, quantification: still on simulation level