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I. Introduction 1I. Introduction 1

� classification or pattern recognition techniques offer the
advantages to be data-driven approach

� These techniques have been shown very effective for medical
diagnosis as cancer prognosis characterized by:

- High dimensionality of data (e.g. thousands of genes)- High dimensionality of data (e.g. thousands of genes)
- Data heterogeneity (e.g. Qualitative, quantitative, interval)

� These techniques have also been shown effective for fault
detection and diagnosis of complex industrial processes.

� Despite their behavioral difference, both domains (industrial
processes and medical diagnosis) exhibit many common
practices:

� problem of marker selection for medical diagnosis

� problem of sensor selection for industrial process diagnosis



I. Introduction 2I. Introduction 2

� A novel methodology enables to handle simultaneously both 
problems regardless of their own characteristics:

� Copes with the problem of high dimensionality based on classical
optimization methods.

� Handles appropriately heterogeneous data (quantitative, qualitative,� Handles appropriately heterogeneous data (quantitative, qualitative,
interval) .

Relevant example: interval representation of data can improve
classification processing of clinical data in medical diagnosis as well
as to process noisy or uncertain industrial measurements.

- Application to derivation of hybrid markers for cancer prognosis.
- Application to sensor selection for fault diagnosis of pharmaceutical

synthesis process in a new intensified heat-exchanger reactor.



II. Fuzzy Feature SelectionII. Fuzzy Feature Selection
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II.1 II.1 SM:SimultaneousSM:Simultaneous MappingMapping

� Membas enables to process three types of features: Quantitative,
Qualitative and Interval .

� In Fuzzy Logic framework, Simultaneous mapping can be performed
through a Feature Fuzzification according to each feature type.

� Based on a data-driven procedure, l fuzzy partitions { mff1i,…, mff
l
i }� Based on a data-driven procedure, l fuzzy partitions { mff1 ,…, mff
l

}
are obtained for the ith feature to each existing class k :

mffk
i = µk

i (xi, θki)
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II.1 II.1 SM:SimultaneousSM:Simultaneous MappingMapping

Interval type features (similarity semantic):

where and
Therefore,
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� Qualitative type features (Uncertainty semantic):

Where is the frequency of the Mth modality in the class Ck
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II.1 SM: Simultaneous MappingII.1 SM: Simultaneous Mapping

Let be a dataset, where N is the number of
patterns (items) and xn=[xn1,xn2,...,xnm] is the nth pattern.

� A natural result of the previous fuzzification step is a common
membership space for heterogeneous features, i.e. a Membership

{ } CC k ×Χ∈=
N

1nn  =D ,x 

membership space for heterogeneous features, i.e. a Membership
Degree Vector (MDV) of pattern to each class:

where µk
i (xni) =µk

i (xi= xni)

� Each MDV can be considered as a discrete fuzzy subset.
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II.2 SP: MEMBAS for binary class II.2 SP: MEMBAS for binary class 
problemsproblems

� A membership margin is defined for each pattern xn c :

� Where is the scalar cardinality of the fuzzy subsets
described by MDVs.
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� Pattern xn is considered correctly classified if βn >0.

� Weighted adequacy assignment concept through the scalar
cardinalities:

� A weighted membership margin can be defined as:
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II.2 SP: MEMBAS for binary class II.2 SP: MEMBAS for binary class 
problemsproblems

� A margin-based objective function has been defined so that the
averaged membership margin in the resulted weighted membership
space is maximized:

and
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� A closed-form solution using Lagrangian
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II.2 SP: MEMBAS for multiclass II.2 SP: MEMBAS for multiclass 
problemsproblems

� Complex process are characterized by a big number of classes

� An extension of Membas to multiclass problems is needed.

� A membership margin definition for multiclass problems was used:� A membership margin definition for multiclass problems was used:

� This leads to a similar solution
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III Fuzzy learning algorithmIII Fuzzy learning algorithm

� Schematic illustration of LAMDA [J. Aguilar et al.1982]



IV. Marker IV. Marker selectionselection for for 
cancer cancer prognosisprognosis

� An accurate cancer prognosis is needed to help physicians
select optimal treatment and reduce its related expensive
medical costs.

� Usually, either clinical or genes markers are used to perform the
prognosis.

� Integration of both information may improve the prognosis

� Two challenges are faced: High-dimension and heterogeneous
data

- The first due to the presence of a large amount of irrelevant genes in
microarray data

- The second is related to the presence of mixed-type data (quantitative,
qualitative and interval) in the clinical data



Experiments and ResultsExperiments and Results

�� Pronostic du Métastase distantPronostic du Métastase distant : Netherlands Cancer Institute

� 295 breast cancer patients

� 29 patients with missing gene expression excluded from the study.

� 2 classes according to the appearance of distant metastases: 88 patients with
and 207 patients without.

� Training D.(132) : 92 without, 40 with ; Test D. (134) : 93 without, 41 with.

� Microarray dataset: 24188 gene expression� Microarray dataset: 24188 gene expression

� Clinical dataset: 10 variables – 1 of quantitative type; 1 intervallaire et 8
qualitatives

� Age (quantitative)

� Tumour grade (interval :[3,5] ; [6,7] ; [8,9])

� Tumour size = T (qualitative: ≤2cm ; >2cm)
� Nodal status = N (qualitative : pN0 ; ‘1-3’ ; ≥4)
� Mastectomy (qualitative : Yes, No)

� Estrogen Receptor ER expression (qualitative : Yes, No) 

� Chemiotherapy (qualitative: Yes, No)

� Hormonotherapy (qualitative: Yes, No)

� St. Gallen - European criteria (qualitative:  Chemio , No Chemio)

� NIH –US criteria (qualitative: Chemio , No Chemio

� Risk NIH (qualitative: low , intermediate , high)



Experiments and ResultsExperiments and Results

� Derived hybrid signature: MEMBAS selects only 15 hybrid markers

- Three are mixed-type clinical markers (Number of positive lymph nodes
“qualitative” , ER “qualitative” and Grade “interval”), added to them 12 genes.
(optimal Classif. Performance).

� Comparatives results between hybrid, clinical, genetic signatures
and classical clinical indices:

TP FP FN TN Sens. Specif. Accuracy

� St. Gallen - Chimio recommandée quand un critère est vrai : ER negatif; ganglions positif; T>2cm ; Grade III ou II ; 
Age <35 ans. 

� ¤ NIH: Chimio quand ganglions positifs ou Taille > 1cm

TP FP FN TN Sens. Specif. Accuracy

Hybrid 13 12 28 81 0.32 0.87 94/134  (70.15%)

70-genes 25 29 16 64 0.61 0.69 89/134  (66.42%)

Clinical 23 37 18 56 0.56 0.60 79/134 (58.96%)

NIH 41 91 0 2 1 0.02 41/134 (32.09%)

St Gallen 38 85 3 8 0.93 0.09 46/134 (34.33%)

TP: True Positive ; FP: False Positive ; FN: False Negative ; TN: True Negative; Sens.: Sensitivity; Specif.:Specificity.



V Sensor selection methodologyV Sensor selection methodology

� The success of fault detection and diagnosis of complex
process depends strongly on the selection of measurements
that characterize accurately the process behavior .

� Large number of sensor increases the induced instrumentation� Large number of sensor increases the induced instrumentation
cost and may degrades the diagnosis efficiency.

� Efficient sensor selection methodologies are required that:

� Monitor accurately and robustly fault detection in complex processes
� While, assure a reduction in the instrumentation costs and improve

the process safety and quality



V Sensor selection methodologyV Sensor selection methodology

1) Fault identification using the fuzzy classification technique
LAMDA (self-learning) (*)

2) Sensor selection based on MEMBAS method (*) (**)

3) Generation of behavioral pattern of the process based only on the
selected set of sensors.

4) Online recognition and validation on unseen data.

(*) Implemented on SALSA software tool [T. Kempowsky et al., 2003].
(**) Validated in an extensive experimental study on a large number of high

dimensional and heterogeneous datasets [Hedjazi et al., 2010].



Application on chemical processApplication on chemical process

� Pharmaceutical synthesis in a new intensified heat exchanger reactor
equipped of 15 sensors: 12 internal temperatures (interval) , Utility
outlet temperature (interval) , Reacts. Pressure (quantitative) .
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Application on chemical processApplication on chemical process

Class Number CLASS DESCRIPTION

1 Steady state
2 Increased (�)flow reactant B 
3 Critical Increased (�) flow reactant B
4 Increased (�) flow reactant A
5 Decreased (�) flow reactant A
6 Shut-down flow reactant A 
7 Shut-down utility flow
8 Critical shut-down utility flow

1) Fault identification using the fuzzy clustering technique LAMDA.

���� Flow  A

Shut-down Flow A

����Flow  A

Shut-down B

Shut-down utility

���� Flow B

Dilute Concentrations

Steady state

8 Critical shut-down utility flow
9 Shut-down flow reactant B 
10 Dilute concentration reactant A
11 Critical dilute concentration reactant A



Application on chemical processApplication on chemical process

2) Sensor selection using MEMBAS method.
RANK INDEX WEIGHT NAME

1 14 0.369726 P. Injection (B)

2 15 0.353165 P. Primary (A)

3 2 0.347069 Bo_int

4 10 0.312663 Jo_int

5 7 0.277623 Go_int

6 11 0.274547 Ko_int

7 1 0.264255 Ao_int

8 12 0.262668 Lo_int

Optimal number?
recogn. Error = 3.66%

3) Generation of behavioral pattern of the process based on the selected
sensors (class profile).

8 12 0.262668 Lo_int

9 3 0.25645 Co_int

10 8 0.234234 Ho_int

D3. Jo_int
D2. Go_int
D1. Bo_int

D4. Po React B
D5. Po React A



Application on chemical processApplication on chemical process

���� Flow  A
Shut-down Flow A

����Flow  A

Shut-down B

Shut-down utility

Dilute Concentrations(a)

a) Faults identified using 15 original sensors

4) Online recognition and validation on unseen data Fault on concentration 
detected only with 
temperature measurements

����Flow  A
���� Flow B

Steady state

b) Recognition using 5 selected sensors by Membas ( 3.66% recognition
error)

(b)
Dilute Concentrations

Shut-down B

Shut-down utility
Shut-down Flow A

���� Flow  A
����Flow  A

���� Flow B Steady state



Application on chemical processApplication on chemical process

���� Flow  A
Shut-down Flow A

c) Validation on unseen data

���� Flow  A

Shut-down Flow A Shut-down Flow A

Shut-down flow B

Steady state

D3. Jo_int
D2. Go_int
D1. Bo_int



ConclusionConclusion

1. Medical diagnosis:

� Two challenges faced for the integration of clinical and microarray data to
perform cancer prognosis/diagnosis : High-dimensional and heterogeneous data.

� This approach can outperform classical approaches and selects meaningful
hybrid markers signature: Three well known clinical markers (i.e. included in
clinical indices) and twelve genes.

� Reduces significantly the number of markers needed to perform a cancer
prognosis task (15 hybrid markers vs. 70 Amsterdam genes).

2. Industrial process diagnosis:

� Proposed approach handles interval data which are of big interest in practical
situations to take into account inherent uncertainty to sensors measurement and
noisy data (avoid false alarms).

� The proposed methodology is Data-driven based, does not require a physical
model and is appropriate for Highly nonlinear and dimensional problems.

� Application on chemical process: High fault detection accuracy and reduced
number of sensors ( avoid expensive on-line concentration mea- surement)



ConclusionConclusion

� Despite their behavioral difference, both domains industrial process
and medical diagnosis exhibit many common practices:

� Sensor selection for industrial process diagnosis

� Marker selection for medical diagnosis

� A novel methodology enables to handle simultaneously both problems � A novel methodology enables to handle simultaneously both problems 
regardless of their own characteristics:

� Copes with the problem of high dimensionality based on classical
optimization methods.

� Handles appropriately heterogeneous data (quantitative, qualitative, interval)

� Handling interval data which are of big interest in practical situations to take
into account inherent uncertainty to sensors measurement and noisy data
(avoid false alarms).


