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R l. Introduction 1 LAAS-LNRS

2 classification or pattern recognition techniques offer the
advantages to be data-driven approach

2 These techniques have been shown very effective for medical
diagnosis as cancer prognosis characterized by:

- High dimensionality of data (e.g. thousands of genes)
- Data heterogeneity (e.g. Qualitative, quantitative, interval)

2 These techniques have also been shown effective for fault
detection and diagnosis of complex industrial processes.

2 Despite their behavioral difference, both domains (industrial
processes and medical diagnosis) exhibit many common
practices:

> problem of marker selection for medical diagnosis
> problem of sensor selection for industrial process diagnosis
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2 A novel methodology enables to handle simultaneously both
problems regardless of their own characteristics:

- Copes with the problem of high dimensionality based on classical
optimization methods.

- Handles appropriately heterogeneous data (quantitative, qualitative,
interval) .

Relevant example: interval representation of data can improve
classification processing of clinical data in medical diagnosis as well
as to process noisy or uncertain industrial measurements.

- Application to derivation of hybrid markers for cancer prognosis.

- Application to sensor selection for fault diagnosis of pharmaceutical
synthesis process in a new intensified heat-exchanger reactor.
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2 MEMBAS (MEmbership Margin Based feAture Selection): [Hedjazi
et al., 2010].
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2 Membas enables to process three types of features: Quantitative,
Qualitative and Interval .

2 In Fuzzy Logic framework, Simultaneous mapping can be performed
through a Feature Fuzzification according to each feature type.

72 Based on a data-driven procedure, / fuzzy partitions { mff,',..., mff}}
are obtained for the it" feature to each existing class k :

mff ] = p/(x;, )

2 Quantitative type features (similarity semantic):

,uf([xi‘pli(,gb:(]:¢L1-\xi—p‘k\(1_ :(yxi—p‘k\ where ¢l‘(:mk . X
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Interval type features (similarity semantic):

S(A B)= (LU[An B . . a[A,B]j

laoB] ~ wlu]

where 9[A B]:rrm[o,(rra({a‘,b‘}—m‘n{a*,b*})] and LU[X]:upper.bouno(x)—lower.bounc(x)
Therefore, :UL (Xi): S(xi | pll()

- 1 mk -
where —ZXJ and A :EZ&‘

kJ1

2 Qualitative type features (Uncertainty semantic):
[ _ i \YiL i Qimi
luk(Xi)_(chl) D”'D(cbklvli)

Where @' is the frequency of the M" modality in the class C,

and C_J1if x =Q)
bo0if x #Q;
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Let D ={x,,C,}"..0X xC be a dataset, where N is the number of
patterns (items) and X,=[X.1,X.7,--.,X,m] IS the n" pattern.

2 A natural result of the previous fuzzification step is a common
membership space for heterogeneous features, i.e. a Membership
Degree Vector (MDV) of pattern to each class:

T
Upe :[,u& (%00)s 4 (Xop) e (xnm)} k=12,

where p! (Xq) =p (%= Xp)

2 Each MDV can be considered as a discrete fuzzy subset.
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2 A membership margin is defined for each pattern x, e c:

Bn: \V(UnC)'\V(UnC)

72 Where ¢y ) =iZﬂL(Xni) is the scalar cardinality of the fuzzy subsets
described by MDVs.

2 Pattern x, is considered correctly classified if {3,,>0.

2 Weighted adequacy assignment concept through the scalar
cardinalities: T |
YU, M) = WU :izWﬁ Fhe (%)

2 A weighted membership margin can be defined as:

IBn = QU(UnC/Wf)-QU(Uné/Wf)
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2 A margin-based objective function has been defined so that the
averaged membership margin in the resulted weighted membership
space is maximized:

|\{I|V?X Zrl:lzl B, (Wf )= Zrl:lzl{ 221 W :uci ( Xi ) - irzl Wi ,u(': ( X, )}

st :lw[p=1,and w; =0

2 A closed-form solution using Lagrangian

+

S

Is™ i

W, =
N
where S=. {Unc ‘Una}

n=1

with s*= [max(s;,0), ..., max(s,,,0)]"
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2 Complex process are characterized by a big number of classes

- An extension of Membas to multiclass problems is needed.

2 A membership margin definition for multiclass problems was used:

= min WU .- WP\U =
Bn {EDC,E¢C(Xn)}{ ( nC) ( nc )}
2 This leads to a similar solution ot
Wi = —
. IIs™ |l
With N

S= min U, -U~
ngl {EDC,E;tC(xn)}{ ne ”C}
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2 Schematic illustration of LAMDA [J. Aguilar et al.1982]
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2 An accurate cancer prognosis is needed to help physicians
select optimal treatment and reduce its related expensive
medical costs.

2 Usually, either clinical or genes markers are used to perform the
prognosis.

2 Integration of both information may improve the prognosis

2 Two challenges are faced: High-dimension and heterogeneous
data

- The first due to the presence of a large amount of irrelevant genes in
microarray data

- The second is related to the presence of mixed-type data (quantitative,
gualitative and interval) in the clinical data
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o3 Pronostic du Métastase distant : Netherlands Cancer Institute
+ 295 breast cancer patients
+ 29 patients with missing gene expression excluded from the study.

+ 2 classes according to the appearance of distant metastases: 88 patients with
and 207 patients without.

Training D.(132) : 92 without, 40 with ; Test D. (134) : 93 without, 41 with.

Microarray dataset: 24188 gene expression

+ Clinical dataset: 10 variables - 1 of quantitative type; 1 intervallaire et 8
qualitatives

Age (quantitative)

Tumour grade (interval :[3,5] ; [6,7] ; [8,9])

Tumour size = T (qualitative: <2cm ; >2cm)

Nodal status = N (qualitative : pNO ; ‘1-3’ ; >4)

Mastectomy (qualitative : Yes, No)

Estrogen Receptor ER expression (qualitative : Yes, No)

Chemiotherapy (qualitative: Yes, No)

Hormonotherapy (qualitative: Yes, No)

St. Gallen - European criteria (qualitative: Chemio , No Chemio)

NIH -US criteria (qualitative: Chemio , No Chemio

Risk NIH (qualitative: low , intermediate , high)

+ +

+ 4+ 4+
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o3 Derived hybrid signature: MEMBAS selects only 15 hybrid markers

Three are mixed-type clinical markers (Number of positive lymph nodes
“qualitative” , ER “qualitative” and Grade “interval”), added to them 12 genes.
(optimal Classif. Performance).

o3 Comparatives results between hybrid, clinical, genetic signatures
and classical clinical indices:

Hybrid 13 12 28 81 0.32 0.87 94/134 (70.15%)
70-genes 25 29 16 64 0.61 0.69 89/134 (66.42%)
Clinica 23 37 18 56 0.56 0.60 79/134 (58.96%)

NIH 41 91 0 2 1 0.02 41/134 (32.09%)
St Gallen 38 85 3 8 0.93 0.09 46/134 (34.33%)

s St. Gallen - Chimio recommandée quand un critéere est vrai : ER negatif; ganglions positif; T>2cm ; Grade lll ou Il ;
Age <35 ans.

o3 " NIH: Chimio quand ganglions positifs ou Taille > 1cm
TP: True Positive ; FP: False Positive ; FN: False Negative ; TN: True Negative; Sens.: Sensitivity; Specif.:Specificity.
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2 The success of fault detection and diagnosis of complex
process depends strongly on the selection of measurements
that characterize accurately the process behavior .

2 Large number of sensor increases the induced instrumentation
cost and may degrades the diagnosis efficiency.

2 Efficient sensor selection methodologies are required that:

- Monitor accurately and robustly fault detection in complex processes

- While, assure a reduction in the instrumentation costs and improve
the process safety and quality
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1) Fault identification using the fuzzy classification technique
LAMDA (self-learning) *)

2) Sensor selection based on MEMBAS method *) (*¥)

3) Generation of behavioral pattern of the process based only on the
selected set of sensors.

4) Online recognition and validation on unseen data.

*) Implemented on SALSA software tool [T. Kempowsky et al., 2003].

(**) Validated in an extensive experimental study on a large number of high
dimensional and heterogeneous datasets [Hedjazi et al., 2010].
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2 Pharmaceutical synthesis in a new intensified heat exchanger reactor
equipped of 15 sensors: 12 internal temperatures (interval) , Utility
outlet temperature (interval) , Reacts. Pressure (quantitative) .

Aag)* By~ Cay* Dy
Baiy*Eq@) - 2D q)

cooling fuid
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1) Fault identification using the fuzzy clustering technique LAMDA.

Class Number CLASS DESCRIPTION
1 Steady state
2 Increased (#)flow reactant B
3 Critical Increased (1) flow reactant B
4 Increased (#) flow reactant A
5 Decreased (¥#) flow reactant A
6 Shut-down flow reactant A
7 Shut-down utility flow
8 Critical shut-down utility flow
9 Shut-down flow reactant B
10 Dilute concentration reactant A
11 Critical dilute concentration reactant A
12-
11- Dilute Concentirations
10- —— =
- Shut-down B
S_
w7 Shut-down utility,
L
[y}
5 & === Shut-down Flow A
B { Flow A
4- ]
tFlow A
3= N EEE—
D t.Elow B
1- Steady. state
|:|_

1 50 100 150 200 250 300 350 400 450 500 S50 GO0 ESO 700 750 GO0 G50 899
Reference Clazzification | ndividualz
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2) Sensor selection using MEMBAS method. Optimal number?
RANK  INDEX _ WEIGHT NAM E Descriptorsweightpltﬂecogn Error = 3.66%
1 14 0.369726 P. Injection (B) 037-
2 15 0.353165 P. Primary (A) .
3 2 0.347069 Bo_int 0:30-
4 10 0.312663 Jo_int .
5 7 0.277623 Go_int s
6 11 0.274547 Ko_int D20-
7 1 0.264255 Ao_int A6
8 12 0.262668 Lo_int l . e
9 3 0.25645 Co_int D10[;14 DI5s D2 DI0 DY D1 DI D12 D3 D8 D3 D4 DB D13 DS
10 8 0.234234 Ho_int Descriptar Indiex

3) Generation of behavioral pattern of the process based on the selected
sensors (class profile).
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4) Online recognition and validation on unseen data

a) Faults identified using 15 original sensors
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b) Recognition using 5 selected sensors by Membas ( 3.66% recognition

error)
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c) Validation on unseen data
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1. Medical diagnosis:

2 Two challenges faced for the integration of clinical and microarray data to
perform cancer prognosis/diagnosis : High-dimensional and heterogeneous data.

2 This approach can outperform classical approaches and selects meaningful
hybrid markers signature: Three well known clinical markers (i.e. included in
clinical indices) and twelve genes.

2 Reduces significantly the number of markers needed to perform a cancer
prognosis task (15 hybrid markers vs. 70 Amsterdam genes).

2. Industrial process diagnosis:

2 Proposed approach handles interval data which are of big interest in practical
situations to take into account inherent uncertainty to sensors measurement and
noisy data (avoid false alarms).

2 The proposed methodology is Data-driven based, does not require a physical
model and is appropriate for Highly nonlinear and dimensional problems.

2 Application on chemical process: High fault detection accuracy and reduced
number of sensors (avoid expensive on-line concentration mea- surement)
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2 Despite their behavioral difference, both domains industrial process
and medical diagnosis exhibit many common practices:

—> Sensor selection for industrial process diagnosis
- Marker selection for medical diagnosis

2 A novel methodology enables to handle simultaneously both problems
regardless of their own characteristics:

- Copes with the problem of high dimensionality based on classical
optimization methods.

- Handles appropriately heterogeneous data (quantitative, qualitative, interval)

- Handling interval data which are of big interest in practical situations to take
into account inherent uncertainty to sensors measurement and noisy data
(avoid false alarms).



