

Projet Européen iGNC - Mission Mars Sample Return

David HENRY (david.henry@ims-bordeaux.fr)

Luigi Strippoli (GMV) Pablo Colmenarejo (GMV) Gabriele Novelli (GMV)
Andrea Pellacani (GMV) Jesús Gil (GMV) Thomas Peters (GMV) Matteo
Suatoni (GMV) Nuno Miguel Gomes (GMV) Tomás Prieto (GMV)
Catherine Le Peuvedic (TASF) Catherine Charbonnel (TASF) Piergiorgio
Lanza (TASI) David Henry (IMS) Anusha Mujumdar (U. Exeter)
Purushothama Prathyush (U. Exeter) Nick Rowell (U. Dundee) Arthur
Richards (U. Bristol)

IGNC MISSION MSR		FDI	Résultats
00	00	0000000000000000	0000

La mission MSR

Mission MSR

- **1** un véhicule de transfert Terre-Mars
- 2 un orbiteur (chasseur)
- 3 un module de descente
- un module de mise en orbite + canister (cible)
- un véhicule de retour + rentrée atmosphérique

- Orbiteur: 2 panneaux solaires (4 modes flexibles), 2 réservoirs (2 modes)
- Canister: sphère de 23cm de diamètre

Mission MSR		FDI	
000	00	0000000000000000	0000

La mission MSR

Instrumentation et Actionneurs

Absolute sensors	Nb.	Type/Supplier
Star-Tracker	2	Selex Galileo
IMU	2	MIMU Honeywell
Sun sensor	2	TNO Sun Acquisition Sensor (SAS)

Relative sensors	Nb.	Type/Supplier
RF Doppler	2	ELECTRA payload
NAC	2	IRIS-3 camera 5x5 deg 1024x1024 pxls

Actuator	Nb.	Type/Supplier
Reaction	4	RSI 25-220/45 Rockwell
Wheels	at m	Collins
Thrusters	24	10N Astrium S10-26
Main Engine	1	424N Astrium S400-15

Mission MSR		FDI	
000	00	0000000000000000	0000

La phase de rendez vous

	Nominal OS	Nominal Orbiter (scenario 1)	Nominal Orbiter (scenario 2)	Contingency OS (MAV circularization failure)
Rp, Ra [km]	535x535 (minimum orbit altitude providing acceptable results in terms of OS orbit determination)	300x610 (12:1 resonant elliptic orbit with respect to MAV launch site)	455x455 (12:1 resonant circular orbit with respect to MAV launch site)	219x535
Inclination [deg]	40	40	40	40
RAAN [deg]	Ensuring initial illumination of the target	Ensuring initial illumination of the target	Ensuring initial illumination of the target	Ensuring initial illumination of the target
Arg. of pericenter [deg]	Ensuring initial illumination of the target	Ensuring initial illumination of the target	Ensuring initial illumination of the target	Ensuring initial illumination of the target
ØTrue Anomaly [deg]	-10	-10	-10	-10

MAV injection accuracy

- Semi-major axis: 66 km
- Eccentricity: 0.013
- Inclination: 0.2 deg;
- RAAN: 0.1 deg;
- Argument of pericentre: 0.5 deg;
- True anomaly: 0.1 deg
- Separation velocity: 1 m/s
- OS initial knowledge accuracy: 20 km (3D)

Le software = GNC

- Compliant with Aurora Avionics Architecture
- Three-layers
 - AMM and SHM are part of a supervisory level
 - Manoeuvre decision logic and safety monitoring performs execution level
 - Control, navigation, attitude guidance, translational guidance library and control allocation belongs to the regulatory level
- Very high level of onboard autonomy is targeted

5/2'

	Mission MSR 000	GNC ○●	FDI 000000000000000000000	Résultat 0000
La fonc	ction Autono	mous Mission	Management ((AMM)
Agrégatio	n			
Level 1 se	ensor checks	Monitoring of the out most of the sensor fau lock-in-place fault typ	puts of all sensors. This le alts such as sudden sensor o pes	vel covers leath and
Level 2 IN	MU/IMU - IMU/STR	Interest is limited to level 1, e.g. slow drift	the detection of failures not ts	ot seen by
Level 3 th	nruster/IMU	Interest is faults in dancy enables to dis based techniques bas didates.	thrusters. The IMU ho scard IMU failures, leadir sed on the IMUs to be vi	ot redun- ig model- able can-
Level 3 w	heel/tachometer	Covers wheels faults. tachometer is availab	The isolation is immedia le on each wheel.	te since a
Level 4 ap	oproach corridors	Monitor the attitude, sus the approach corr	/position/velocity of the cl ridors.	naser ver-
Level 4 co Level 4 m	ollision risks ode success	Detect if a collision n Detect the divergence	nay occur between the spa	cecraft
Level 5 pc	ower alarm	Protection against gr subsystem failures	ound operation errors and	electrical

Solutions par approches à base de modèles:

• Level 2 IMU/IMU (espace de parité statique + analyse de covariance) - IMU/STR (OBS NL optimal localement au sens H_{∞})

	Mission MSR 000	GNC ○●	FDI 000000000000000000000	Résultat 0000
La fonc	ction Autono	mous Mission	Management ((AMM)
Agrégatio	n			
Level 1 se	ensor checks	Monitoring of the out most of the sensor fau lock-in-place fault typ	puts of all sensors. This le alts such as sudden sensor o pes	vel covers leath and
Level 2 IN	MU/IMU - IMU/STR	Interest is limited to level 1, e.g. slow drift	the detection of failures not ts	ot seen by
Level 3 th	nruster/IMU	Interest is faults in dancy enables to dis based techniques bas didates.	thrusters. The IMU ho scard IMU failures, leadir sed on the IMUs to be vi	ot redun- ig model- able can-
Level 3 w	heel/tachometer	Covers wheels faults. tachometer is availab	The isolation is immedia le on each wheel.	te since a
Level 4 ap	oproach corridors	Monitor the attitude, sus the approach corr	/position/velocity of the cl ridors.	naser ver-
Level 4 co Level 4 m	ollision risks ode success	Detect if a collision n Detect the divergence	nay occur between the spa	cecraft
Level 5 pc	ower alarm	Protection against gr subsystem failures	ound operation errors and	electrical

Solutions par approches à base de modèles:

• Level 2 IMU/IMU (espace de parité statique + analyse de covariance) - IMU/STR (OBS NL optimal localement au sens H_{∞})

Level 3 thruster/IMU

• une fonction detection robuste $\mathbf{r}(s) = \mathcal{F}(s)\mathbf{e}_y(s) \Rightarrow$ filtre $H_{\infty}/H_{-} + postanalyse \mu_g$ ("pire cas")

wm

 \overline{F}_n

 $\begin{array}{l} \textcircled{0} & \text{une fonction isolation} \Rightarrow \text{circonscrit la faute aux tuyères engendrant le} \\ & \text{même couple / force (2 tuyères candidates)} = \text{stratégie à base de 7} \\ & \text{UIOs t.q.} \left\{ \begin{array}{l} \dot{\boldsymbol{z}} = \boldsymbol{N}\boldsymbol{z} + \boldsymbol{G}\boldsymbol{u} + \boldsymbol{L}\boldsymbol{y} \\ & \hat{\boldsymbol{x}} = \boldsymbol{z} + \boldsymbol{H}\boldsymbol{y} \end{array} \right., \quad \boldsymbol{e}_{y} = \boldsymbol{C}(\boldsymbol{x} - \hat{\boldsymbol{x}}) \end{array}$

• une fonction isolation finale qui isole la tuyère défaillante \Rightarrow analyse de direction colinéaire (produit vectoriel)

ът 171 .		• 1		
	000	00	0000000000000000	0000
iGNC	Mission MSR		FDI	Résultats

Modelisation (dynamiques de rotation)

2nd loi d'Euler

$$\dot{\boldsymbol{\omega}} = \boldsymbol{J}^{-1} \sum_{k} \boldsymbol{T}_{k} - \boldsymbol{J}^{-1} \boldsymbol{\omega} \times \boldsymbol{J} \boldsymbol{\omega}, \quad \boldsymbol{\omega} = [p, q, r]^{T}$$

- couple de propulsion \boldsymbol{T}_p
- couples de perturbation T_d (pression solaire, gradient de gravité, vent de très haute atmosphère)
- couples "souples" liés aux panneaux solaires \boldsymbol{T}_{sa}
- couples de ballottement du carburant \boldsymbol{T}_s (2 réservoirs à 50%)

Modes flexibles panneaux

$$\boldsymbol{T}_{sa} = -\underline{\boldsymbol{L}} \boldsymbol{\ddot{q}} - \sum_{i=1}^{n_p} \boldsymbol{J}_{SA_i} \boldsymbol{\dot{\omega}}, \quad J_{SA_i} = J_{0_i} + J_{transport}$$

$$\ddot{\boldsymbol{q}} + 2\boldsymbol{\xi}\boldsymbol{\omega}_{0}\dot{\boldsymbol{q}} + \boldsymbol{\omega}_{0}^{2}\boldsymbol{q} = \boldsymbol{L}^{T}\dot{\boldsymbol{\omega}}, \quad \boldsymbol{q} \in \mathbb{R}^{n_{s}.n_{p}}, \quad n_{p} = 2, n_{s} = 4$$
$$\underline{\boldsymbol{L}}_{i} = \boldsymbol{\mathcal{R}}_{i}(\alpha)\boldsymbol{B}_{R_{i}} + \boldsymbol{S}(\boldsymbol{d}_{i})\boldsymbol{\mathcal{R}}_{i}(\alpha)\boldsymbol{B}_{T_{i}}$$

Modélisation (dynamiques de rotation)

Modes de ballottement

 \Rightarrow couples induits par une accélération \Rightarrow modèle masse-ressort-amortisseur (3D)

$$\ddot{\boldsymbol{x}}_{s} + rac{\boldsymbol{l}_{s}}{m_{s}}\dot{\boldsymbol{x}}_{s} + rac{\boldsymbol{k}_{s}}{m_{s}}\boldsymbol{x}_{s} = \boldsymbol{\gamma} - \sum_{k} \boldsymbol{\gamma}_{k}, \quad \boldsymbol{x}_{s} \in \mathbb{R}^{3}, \quad \boldsymbol{T}_{si} = \boldsymbol{r} imes (\boldsymbol{k}\boldsymbol{x}_{s} + \boldsymbol{l}\dot{\boldsymbol{x}}_{s})$$

- m_s = masse du carburant, $\boldsymbol{r} \in \mathbb{R}^3$ distance CoM-centre de masse des réservoirs

- acceleration de coriolis: $\boldsymbol{\gamma}_1 = 2\boldsymbol{\omega} \times \dot{\boldsymbol{x}}_s$
- acceleration centrifuge: $\boldsymbol{\gamma}_2 = \boldsymbol{\omega} \times (\boldsymbol{\omega} \times (\boldsymbol{r} + \boldsymbol{x}_s))$
- acceleration d'Euler: $\boldsymbol{\gamma}_3 = \dot{\boldsymbol{\omega}} \times (\boldsymbol{r} + \boldsymbol{x}_s)$
- γ = accélération au CoM (2nd Newton's law): $m\gamma = \sum_k F_k$
- m = masse du chasseur
- ${\pmb F}_p$ = forces liées au système de propulsion
- \boldsymbol{F}_d = forces de perturbations

-
$$\boldsymbol{F}_{sa}$$
 = panneaux solaires $\begin{array}{c} \boldsymbol{F}_{sa} = -\overline{\boldsymbol{L}} \boldsymbol{\ddot{q}} - \sum_{i=1}^{n_p} m_{sa_i} \boldsymbol{\gamma} \\ \overline{\boldsymbol{L}} = [...\overline{\boldsymbol{L}}_i...], \ \overline{\boldsymbol{L}}_i = \boldsymbol{\mathcal{R}}_i(\alpha) \boldsymbol{B}_{\boldsymbol{T}_i} \end{array}$

Modélisation (dynamiques de rotation)

Modèle du système de propulsion

$$\boldsymbol{T}_{p} = [M_{T_{1}}...M_{T_{12}}]\boldsymbol{u} = \boldsymbol{M}_{T}\boldsymbol{u}$$
$$\boldsymbol{F}_{p} = [M_{F_{1}}...M_{F_{12}}]\boldsymbol{u} = \boldsymbol{M}_{F}\boldsymbol{u} \quad \boldsymbol{M} = \begin{bmatrix} \boldsymbol{M}_{T}^{T} \ \boldsymbol{M}_{F}^{T} \end{bmatrix}^{T}$$
$$\begin{bmatrix} \boldsymbol{T}_{p}^{T} & \boldsymbol{F}_{p}^{T} \end{bmatrix}^{T} = \boldsymbol{M}\boldsymbol{u}(t-\tau)$$

Modèle complet

• linéarisation autour de la trajectoire de rendez vous $(\omega_0 = 0, \Theta_0 = 0)$

approximation de Padé pour les retards

$$\Rightarrow \left\{ \begin{array}{ll} \dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + (\boldsymbol{B} + \Delta\boldsymbol{B})\boldsymbol{u} + \boldsymbol{E} \begin{bmatrix} \boldsymbol{T}_d \\ \boldsymbol{F}_d \end{bmatrix} & \quad \begin{array}{l} \operatorname{dim}(\mathbf{x}) = \mathbf{32} \\ \operatorname{dim}(\mathbf{u}) = \mathbf{32} \\ \operatorname{dim}(\mathbf{u}) = \mathbf{32} \\ \operatorname{dim}(\mathbf{u}) = \mathbf{32} \\ \operatorname{dim}(\mathbf{y}) = \mathbf{32} \end{array} \right.$$

Modéli	sation (dyn	amiques de r	otation)	
	000	00	000000000000000000000000000000000000000	0000
			FDI	

List of considered uncertainties:

dBR sa y mode 1: 2 occurrences dBR sa y mode 3: 2 occurrences dBR sa z mode 4: 2 occurrences dBT sa x mode 1: 4 occurrences dBT sa x mode 3: 4 occurrences dBT sa x mode 4: 4 occurrences dBT sa y mode 2: 4 occurrences dCOM x: 4 occurrences dCOM y: 4 occurrences dCOM z: 4 occurrences dIxx: 2 occurrences dIvy: 2 occurrences dIzz: 2 occurrences d sa angle: 8 occurrences dangle gyr x: 2 occurrences dangle gyr y: 2 occurrences dangle gyr z: 2 occurrences dangle tthrust x: 2 occurrences dangle tthrust v: 2 occurrences dangle tthrust z: 2 occurrences ddamp sa mode 1: 2 occurrences ddamp sa mode 2: 2 occurrences ddamp sa mode 3: 2 occurrences ddamp sa mode 4: 2 occurrences dfreq sa mode 1: 4 occurrences dfreq sa mode 2: 4 occurrences dfreq sa mode 3: 4 occurrences dfreq sa mode 4: 4 occurrences dslosh damping sm1: 3 occurrences dslosh damping sm2: 3 occurrences dslosh mass sm1: 3 occurrences dslosh mass sm2: 3 occurrences dslosh stiffness sm1: 3 occurrences dslosh stiffness sm2: 3 occurrences dtao thr: 3 occurrences

- 36 incertitudes (dépendance nonlinéaire)
- **2** contrainte dure ESA:

preuve formelle de robustesse \Rightarrow stratégie de reconfiguration

$$\Rightarrow \boldsymbol{y}(s) = F_u(\boldsymbol{P}(s), \boldsymbol{\Delta}) \begin{bmatrix} \boldsymbol{T}_d(s) \\ \boldsymbol{F}_d(s) \\ \boldsymbol{u}(s) \end{bmatrix} + \boldsymbol{n}_{\omega}(s)$$
$$\boldsymbol{u}(s) = \boldsymbol{K}(s) \begin{bmatrix} \boldsymbol{\omega}_m(s) \\ \boldsymbol{\Theta}_m(s) \end{bmatrix}$$

$$\begin{split} \Delta &= blocdiag(\delta_{1}I_{2}, \delta_{2}I_{2}, \delta_{3}I_{2}, \delta_{4}I_{2}, \delta_{5}I_{4}, \delta_{6}I_{4}, \\ &\delta_{7}I_{4}, \delta_{8}I_{4}, \delta_{9}I_{4}, \delta_{10}I_{4}, \delta_{11}I_{4}, \delta_{12}I_{2}, \delta_{13}I_{2}, \\ &\delta_{14}I_{2}, \delta_{15}I_{8}, \delta_{16}I_{2}, \delta_{17}I_{2}, \delta_{18}I_{2}, \delta_{19}I_{2}, \delta_{20}I_{2}, \delta_{21}I_{4} \\ &\delta_{25}I_{2}, \delta_{26}I_{4}, \delta_{27}I_{4}, \delta_{28}I_{4}, \delta_{29}I_{4}, \delta_{30}I_{3}, \\ &\delta_{31}I_{3}, \delta_{32}I_{3}, \delta_{33}I_{3}, \delta_{34}I_{3}, \delta_{35}I_{3}, \delta_{36}I_{3}), \\ &||\Delta||_{\infty} \leq 1 \end{split}$$

 $\mathbf{\Delta} \in \mathbb{R}^{107 imes 107}$

Solution proposée

- une stratégie uniquement basée sur mesure IMS (ω) car diagnostiqués par une approche signal au niveau antérieur (Level 2)
- Q 7 UIOs ⇒ circonscrit la faute aux tuyères engendrant le même couple / force (2 tuyères candidates)

• une fonction détection robuste avec preuve formelle de robustesse $\forall \Delta, T_d, F_d, n_{\omega}$.

iGNC	Mission MSR	GNC	FDI	Résultats
	000	00	0000000000000000	0000
Les UIOs				

- Une théorie LMI \Rightarrow plus robuste numériquement (dim(x) = 32)
- $\bigcirc \Delta = 0 \Rightarrow$ aucune garantie de robustesse $\Delta, T_d, F_d, n_\omega$.

Théorie générale (dans notre cas $\Phi(x) = 0$)

$$\left\{ \begin{array}{l} \dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{\Phi}(\boldsymbol{x}(t)) + (\boldsymbol{B} + \Delta \boldsymbol{B})\boldsymbol{u}(t) + \boldsymbol{E}\boldsymbol{d}(t) \\ \boldsymbol{y}(t) = \boldsymbol{C}\boldsymbol{x}(t) \end{array} \right.$$

E va être choisi égal à \mathbb{M}_i , $i = \{1, 2, 3, 4\}$, $i = \{5, 12\}$, $i = \{6, 11\}$, $i = \{7, 10\}$, $i = \{8, 9\}$, $i = \{1, 4\}$, $i = \{2, 3\}$ = les colonnes de la matrice de configuration des tuyères.

Hypothèses:

• $\Phi(x)$ est localement Lipschitz,

i.e. $\|\boldsymbol{\Phi}(\boldsymbol{x}_1) - \boldsymbol{\Phi}(\boldsymbol{x}_2)\| \leq \gamma \|\boldsymbol{x}_1 - \boldsymbol{x}_2\|, \forall (\boldsymbol{x}_1, \boldsymbol{x}_2) \in \mathcal{S}.$

2 E est de plein rang colonne rank(CE) = rank(E).

	Mission MSR	GNC	FDI	Résultats
	000	00	0000000000000000	0000
Les UIOs				

Définition N.UIOs

$$\begin{aligned} \dot{\boldsymbol{z}}(t) &= \boldsymbol{N}\boldsymbol{z}(t) + \boldsymbol{G}\boldsymbol{u}(t) + \boldsymbol{L}\boldsymbol{y}(t) + \boldsymbol{M}\boldsymbol{\Phi}\left(\hat{\boldsymbol{x}}(t)\right) \\ \hat{\boldsymbol{x}}(t) &= \boldsymbol{z}(t) + \boldsymbol{H}\boldsymbol{y}(t) \\ \boldsymbol{r}(t) &= \boldsymbol{C}(\boldsymbol{x}(t) - \hat{\boldsymbol{x}}(t)) \end{aligned} \Rightarrow \boldsymbol{r}(t) \perp \boldsymbol{d}(t) \end{aligned}$$

La solution générale s'écrit

$$N = MA - KC,$$

 $L = K(I - CH) + MAH,$
 $M = I - HC,$
 $G = MB$
 $(I - HC)E = 0$

où H = U + YV, Y doit être choisi t.q. H est de plein rang et $U = E(CE)^{\dagger}$, $V = I - (CE)(CE)^{\dagger}$

	Mission MSR	GNC	FDI	Résultats
	000	00	00000000000000000	0000
Les UIOs				

Théorème (Fonod et Henry, 2014)

L'UIO non linéaire est asymptotiquement stable et admet la constante max de Lipschitz γ^* avec une atténuation \mathcal{L}_2 de $\Delta \boldsymbol{B}.\boldsymbol{u}$ sur \boldsymbol{e} bornée par $\kappa > 0$, s.si $\exists \boldsymbol{P} = \boldsymbol{P}^T > 0$ et $\bar{\boldsymbol{K}}, \bar{\boldsymbol{Y}}$ solution de

$$\max_{P,\bar{K},\bar{Y}} \xi \quad s.c. \begin{bmatrix} \Psi_{11} + \Gamma_{11} & \Omega_{12} & \Omega_{13} & 0 & 0 \\ * & -I & 0 & 0 & 0 \\ * & * & -I & 0 & 0 \\ * & * & * & -K^2I & S_2B_T \\ * & * & * & * & -I \end{bmatrix} < 0, \quad \begin{bmatrix} \xi & \gamma \\ * & 1 \end{bmatrix} \ge 0$$
(1)

$$\Psi_{11} = ((\boldsymbol{I} - \boldsymbol{U}\boldsymbol{C})\boldsymbol{A})^T \boldsymbol{P} + \boldsymbol{P}(\boldsymbol{I} - \boldsymbol{U}\boldsymbol{C})\boldsymbol{A} + (1+\xi)\boldsymbol{I}$$
(2)

$$\Gamma_{11} = -(VCA)^T \bar{Y}^T - \bar{Y}VCA - C^T \bar{K}^T - \bar{K}C$$
(3)

$$\Omega_{12} = \boldsymbol{P}(\boldsymbol{I} - \boldsymbol{U}\boldsymbol{C}) - \bar{\boldsymbol{Y}}\boldsymbol{V}\boldsymbol{C} \tag{4}$$

$$\boldsymbol{\Omega}_{13} = \boldsymbol{P}(\boldsymbol{I} - \boldsymbol{U}\boldsymbol{C})\boldsymbol{R}_2 - \bar{\boldsymbol{Y}}\boldsymbol{V}\boldsymbol{C}\boldsymbol{R}_2$$
(5)

(6)

$$K = P^{-1}\overline{K}, \quad Y = P^{-1}\overline{Y}, \quad \gamma^* = \sqrt{\xi}$$

Alors

			FDI	
	000	00	00000000000000000	0000
I og UIC				

1700

- L'UIO non linéaire est robuste vis-à-vis de toute incertitude additive $\Delta \Phi(x)$ t.q. $\Phi_{\Delta}(x) = \Phi(x) + \Delta \Phi(x)$ admettant une constante de Lipschitz inférieure où égale à $\gamma^* - \gamma$.
- **2** La maximisation de la constante de Lipschitz γ^* peut entraîner une dynamique très élevée de l'UIO non linéaire. La solution consiste alors à utiliser les régions LMIs (\mathcal{D} -stabilité), ϵMI et $\epsilon \epsilon MI$ ($\mathcal{D}_{\mathcal{U}}$ -stabilité) pour contourner ce problème. En effet, on montre (linéarisation LMI):

$$\boldsymbol{N}^{T} = \boldsymbol{A}^{T} - (\boldsymbol{U}\boldsymbol{C}\boldsymbol{A})^{T} - (\bar{\boldsymbol{Y}}\boldsymbol{V}\boldsymbol{C}\boldsymbol{A})^{T}\boldsymbol{P}^{-1} - (\bar{\boldsymbol{K}}\boldsymbol{C})^{T}\boldsymbol{P}^{-1}$$

On peut donc appliquer une contrainte sur les valeurs propres de N en utilisant directement les résultats sur les régions LMIs, ϵMI et $\epsilon \epsilon MI$.

 7 UIOs ⇒ circonscrit la faute aux tuyères engendrant le même couple / force (2 tuyères candidates)

Q Discrimination par mesure de colinéarité entre $\vec{e}_{yi} = \vec{\omega} - \vec{\hat{\omega}}$ et $\vec{\mathbb{M}}_j$.

	Mission MSR 000	GNC 00	FDI 000000000000000000000000000000000000	Résul 0000
La fonc	tion détection	n robuste		
• Given LFR $y =$ $\Delta \in \underline{\Delta} :$ {block d $\dots, \delta_{m_c}^c I_k$ $\Delta_c^C \in \mathbb{C}$ }	in the (controled) un $= F_u(P, \Delta) \begin{pmatrix} d \\ f \\ u \end{pmatrix},$ $ \Delta _{\infty} \leq 1, \underline{\Delta} =$ $iag(\delta_1^r I_{k_1},, \delta_{m_r}^r I_{k_m}, \Delta_{m_C}^C)$	certain model i where $u(s) = K$ $a_r, \delta_1^c I_{k_{m_r+1}}, \delta_i^c \in \mathbb{R}, \delta_i^c \in \mathbb{R}$	n the f(s)y(s), $\mathbb{C},$ d f u	$\begin{array}{c} \Delta \\ P(s) \end{array}$

• The goal is to find A_F, B_F, C_F, D_F :

$$r(s) = \left(C_F(sI - A_F)^{-1}B_F + D_F\right) \left(\begin{array}{c} y(s)\\ u(s) \end{array}\right)$$

 $\begin{array}{c} y \\ u \end{array} F(s) \end{array} r$

 $\begin{array}{l} \bullet & \min_{F} \gamma_{1} & \forall \Delta \in \underline{\Delta} : ||\Delta||_{\infty} \leq 1 \\ \text{s.t.} & ||T_{rd}||_{\infty} < \gamma_{1} \\ \bullet & \max_{F} \gamma_{2} & \forall \Delta \in \underline{\Delta} : ||\Delta||_{\infty} \leq 1 \\ \text{s.t.} & ||T_{rf}||_{-} > \gamma_{2} & \forall \omega \in \Omega \\ \end{array}$ $\begin{array}{l} \text{(Robustness)} \\ \text{(Fault sensitivity)} \\ \text{where } ||P||_{-} = \inf_{\omega \in \Omega} \underline{\sigma}(P(j\omega)), \Omega = [\omega_{1}; \omega_{2}] \\ \end{array}$

		FDI	
000	00	0000000000000000	0000

The general solution

- The method parallels the well known H_{∞} design / μ analysis cycle
- Thought better than the " μ -synthesis" technique (smaller order filter)
- Specify the robustness and sensitivity objectives through shaping filters $W_d(s)/W_f(s)$

H.frq noise rejection: attenuation of 40dB (at least) for $\omega \in [10rd/s; +\infty[$

L. frq fault amplification of 20dB (at least) for $\omega \in]0; 100]rd/s$

LMI formulation (Henry, 2005, 2005b)

Bounded real lemma (Boyd, 1994) and projection lemma (Gahinet & Apkarian, 1994) using an appropriate basis

		FDI	
000	00	000000000000000000000000000000000000000	0000

The general solution

Unfortunately:

- The procedure involves sufficient conditions $(H_- \to H_\infty, \text{ small gain theorem})$
- The nature (i.e. real and/or complex) and the structure (block diagonal) of Δ is not taken into account.
 - $\Rightarrow \gamma < 1 \rightarrow$ what about the conservativeness ?
 - $\Rightarrow \gamma \ge 1 \to F(s)$ may be an admissible solution !

Post-analysis of robust fault detection performance

 \Rightarrow the generalized structured singular value μ_g (Henry 2002;Henry,2005; Henry,2006)

		FDI	
000	00	000000000000000000000000000000000000000	0000

Definition: μ_g

$$\begin{array}{l} \operatorname{Let} \widetilde{\Delta}_{J} = \left\{ \operatorname{bloc} \operatorname{diag}(\delta_{1}^{r} I_{k_{1}}, ..., \delta_{m_{r,J}}^{r} I_{k_{m_{r,J}}}, \delta_{1}^{c} I_{k_{m_{r,J}+1}}, ..., \\ \delta_{m_{cJ}}^{c} I_{k_{m_{r,J}+m_{cJ}}}, \Delta_{J1}^{c}, ..., \Delta_{Jm_{CJ}}^{c}) \right\} \text{ and } \\ \widetilde{\Delta}_{K} = \left\{ \operatorname{bloc} \operatorname{diag}(\Delta_{K1}^{c}, ..., \Delta_{Km_{CK}}^{c}) \right\}. \\ \operatorname{Let} \widetilde{M} = \left(\begin{array}{c} \widetilde{M}_{JJ} & \widetilde{M}_{JK} \\ \widetilde{M}_{KJ} & \widetilde{M}_{KK} \end{array} \right) \text{ and } \widetilde{\Delta} = \left(\begin{array}{c} \widetilde{\Delta}_{J} & 0 \\ 0 & \widetilde{\Delta}_{K} \end{array} \right) \in \\ \widetilde{\Delta} = \left(\begin{array}{c} \widetilde{\Delta}_{J} & 0 \\ 0 & \widetilde{\Delta}_{K} \end{array} \right) \end{array} \right)$$
 closed-loop system $M - \Delta$

Definition (Henry, 2005; 2005b)

$$\mu_{g\underline{\widetilde{\Delta}}}(\widetilde{M}) \stackrel{\triangle}{=} \max_{||v||=1} \left\{ \gamma : \begin{array}{c} ||v_j||\gamma \leq ||z_j||, j=1, ..., m_{\widetilde{\Delta}J}, m_{CJ} \neq 0\\ ||z_k||\gamma \leq ||v_k||, k=1, ..., m_{CK} \end{array} \right\}$$
(7)

with

$$\widetilde{M} \in \operatorname{dom}(\mu_g) \quad \text{iff} \quad \widetilde{M}_{KK} v_K = 0 \Rightarrow v_K = 0$$

$$\tag{8}$$

Interpretation: Like a μ problem = a robust stability problem:

The smallest (structured) uncertainty $\widetilde{\Delta}_J$ that destabilizes the closed-loop system $M - \Delta$ is $||\widetilde{\Delta}_J|| = 1/\mu_g$ and, simultaneously, the biggest (structured) uncertainty $\widetilde{\Delta}_K$ that destabilizes the closed-loop system is $||\widetilde{\Delta}_K|| = \mu_g$.

The μ_g analysis procedure

Consider W_d and W_f . With some LFR manipulations

FDI

Problem formulation

With the computed solution F(s):

 $||T_{r\widetilde{d}}||_{\infty} < 1 \text{ and } ||T_{r\widetilde{f}}||_{-} > 1 \quad \forall \Delta \in \underline{\Delta} : ||\Delta||_{\infty} \leq 1$

Theorem (Henry,2005): A necessary and sufficient condition for F(s) to satisfy the requirements W_d/W_f is:

 $\operatorname{sup}_{\omega\in \mathbf{\Omega}} \mu_{g\underline{\widehat{\Delta}}}(\mathcal{N}(j\omega)) < 1$

		FDI	
	000	00000000000000000	
En rési	ımé		

The H_{∞}/H_{-} FD filter is derived according to the following procedure

- Specify the robustness and sensitivity objectives → "shaping filters".
- **2** Solve the LMI problem (SDPT 3) to derive A_F, B_F, C_F, D_F :

$$r(s) = \left(C_F(sI - A_F)^{-1}B_F + D_F\right) \left(\begin{array}{c} y(s)\\ u(s) \end{array}\right)$$

• Use the μ_g post-analysis procedure to analyze F(s). Go to step 1 (i.e. refine the objectives) until:

 $\operatorname{sup}_{\pmb{\omega}\in\pmb{\Omega}}\mu_{g\underline{\widehat{\Delta}}}(\mathcal{N}(j\omega))<1$

Résultats de synthèse

Résultats de simulation non linéaire

25/27

Résultats de simulation non linéaire

26/27

		FDI	Résultats
000	00	0000000000000000	0000

Tests industriels

Résultats des tests industriels.....

..... TRL 5