Synergy of canonical control and unfalsified control concept to achieve fault tolerance

Tushar Jain, Joseph J. Yamé, Dominique Sauter

tushar.jain@cran.uhp-nancy.fr

Centre de Recherche en Automatique de Nancy CRAN-CNRS UMR 7039 Group: SURFDIAG

Nancy-Université

Outline

- 2 Fault tolerant control problem
- FTC in behavioral context

Motivations and Objective

Motivations

- Model based FTC requires precise knowledge of plant parameters during FDI operation
 - Information about plant is not known
 - Generates false alarm on mismatching

Motivations and Objective

Motivations

- Model based FTC requires precise knowledge of plant parameters during FDI operation
 - Information about plant is not known
 - Generates false alarm on mismatching
- In closed loop system, FDI must be adaptive w.r.t fault accommodation

Motivations and Objective

Motivations

- Model based FTC requires precise knowledge of plant parameters during FDI operation
 - Information about plant is not known
 - Generates false alarm on mismatching
- In closed loop system, FDI must be adaptive w.r.t fault accommodation
- Time delay factor (FDI delay + Fault accommodation delay)

Motivations and Objective

Motivations

- Model based FTC requires precise knowledge of plant parameters during FDI operation
 - Information about plant is not known
 - Generates false alarm on mismatching
- In closed loop system, FDI must be adaptive w.r.t fault accommodation
- Time delay factor (FDI delay + Fault accommodation delay)

Objective

To develop generic methods of FTC based upon real trajectories from the system subjected to fault rather than through models resulting from a priori assumptions

Fault tolerant control problem

Standard control problem

Solve the problem $\langle \mathfrak{O}, \mathfrak{C}(\theta), \mathfrak{U} \rangle$.

- $\bullet~\mathfrak{O}:$ objectives which the system is expected to achieve
- \mathfrak{U} : set of admissible control laws

Fault tolerant control problem

Standard control problem

Solve the problem $\langle \mathfrak{O}, \mathfrak{C}(\theta), \mathfrak{U} \rangle$.

- \mathfrak{O} : objectives which the system is expected to achieve
- €(θ): functional relations (parameter θ) that controlled system
 satisfy over time
- \mathfrak{U} : set of admissible control laws

Impact of fault on control problem

Occurrence of fault transform the constraints $\mathfrak{C}(\theta)$ from $\mathfrak{C}_n(\theta_n)$ into $\mathfrak{C}_f(\theta_f)$, $f \in \mathcal{F}$, where \mathcal{F} indexes the set of all considered faults.

Fault tolerant control problem

Standard control problem

Solve the problem $\langle \mathfrak{O}, \mathfrak{C}(\theta), \mathfrak{U} \rangle$.

- D: objectives which the system is expected to achieve
- \mathfrak{U} : set of admissible control laws

Impact of fault on control problem

Occurrence of fault transform the constraints $\mathfrak{C}(\theta)$ from $\mathfrak{C}_n(\theta_n)$ into $\mathfrak{C}_f(\theta_f)$, $f \in \mathcal{F}$, where \mathcal{F} indexes the set of all considered faults.

Model based FTC

Constraints $\mathfrak{C}_f(\theta)_f$ are estimated first in "fault detection and isolation" module and then new control law is applied in fault accommodation phase.

Logic based switching control

Controller reconfiguration

- Construct bank of controllers, each one being associated to a healthy or a faulty plant working mode.
- Selection of controller for present working mode assumes to be achieved with some delay.

Logic based switching control

Features

- theory of switching control relies on a bank of controllers
- supervisor is made of a set of estimators that gives the information about the fault
- each estimator reconstructs the plant output in either one of the healthy or faulty working modes

Tushar Jain, CRAN Journée du Groupe de Travail S3

Logic based switching control

Features

- theory of switching control relies on a bank of controllers
- supervisor is made of a set of estimators that gives the information about the fault
- each estimator reconstructs the plant output in either one of the healthy or faulty working modes

Shortcomings

- partial or complete knowledge of plant model must be known
- stability issues concerned with multiple switching
- the presence of good controller in the controller bank is assumed

Logic based switching control

Features

- theory of switching control relies on a bank of controllers
- supervisor is made of a set of estimators that gives the information about the fault
- each estimator reconstructs the plant output in either one of the healthy or faulty working modes

Shortcomings

- partial or complete knowledge of plant model must be known
- stability issues concerned with multiple switching
- the presence of good controller in the controller bank is assumed

Direction

Behavioral System theoretical approach

Proposition

Features of behavioral theoretical approach

- Does not take input-output structure as the starting point
- Mathematical model viewed as any dynamical relation among variables
 - manifest variables or to-be controlled variables
 - latent variables or control variables
- Dynamical relation constraints the time evolution
- Collection of time trajectories defines the *behavior* of dynamical system

Features of behavioral theoretical approach

- Does not take input-output structure as the starting point
- Mathematical model viewed as any dynamical relation among variables
 - manifest variables or to-be controlled variables
 - latent variables or control variables
- Dynamical relation constraints the time evolution
- Collection of time trajectories defines the *behavior* of dynamical system

Definition

Dynamical system Σ is represented by a triple $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$ where $\mathbb{T} \subseteq \mathbb{R}$, called the time axis, $\mathbb{W} \subseteq \mathbb{R}^{\mathbb{W}}$ called the signal space and $\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$ called the behavior. A trajectory is a function

$$\mathbf{w}:\mathbb{T}\to\mathbb{W},\ t\mapsto\mathbf{w}(t)$$

Control in Behavioral Context

Control problem is viewed as an interconnection of two dynamical subsystems with behavior (Plant: *P*, Controller: *C*) such that it gives the controlled behavior, *K*

$$\mathcal{K} = (\mathcal{P} \wedge_{c} \mathcal{C})_{\tt w} \subseteq (\mathcal{P})_{\tt w}$$

- w : to-be controlled variables;
- c : control variables

Control in Behavioral Context

Control problem is viewed as an interconnection of two dynamical subsystems with behavior (Plant: *P*, Controller: *C*) such that it gives the controlled behavior, *K*

$$\mathcal{K} = (\mathcal{P} \wedge_{c} \mathcal{C})_{w} \subseteq (\mathcal{P})_{w}$$

- w : to-be controlled variables;
- c : control variables

 $\mathbb{T}\times\mathbb{W}$

Desired behavior, $\mathcal{D} = \{ w \in \mathbb{W}^{\mathbb{T}} : \Psi(w) < \gamma \};$ γ is a real bound and Ψ is the performance index

Control in Behavioral Context

Control problem is viewed as an interconnection of two dynamical subsystems with behavior (Plant: *P*, Controller: *C*) such that it gives the controlled behavior, *K*

$$\mathcal{K} = (\mathcal{P} \wedge_{c} \mathcal{C})_{w} \subseteq (\mathcal{P})_{w}$$

- w : to-be controlled variables;
- c : control variables

Desired behavior, $\mathcal{D} = \{w \in \mathbb{W}^{\mathbb{T}} : \Psi(w) < \gamma\};$ γ is a real bound and Ψ is the performance index $(\mathcal{P} \wedge_c \mathcal{C})_w = \{w = (u, y, r) \in \mathbb{W}^{\mathbb{T}} : u(t) = C.(r(t) - y(t))\} \subseteq \mathcal{D} \text{ consistent}$

Control in Behavioral Context

Control problem is viewed as an interconnection of two dynamical subsystems with behavior (Plant: *P*, Controller: *C*) such that it gives the controlled behavior, *K*

$$\mathcal{K} = (\mathcal{P} \wedge_{\mathsf{c}} \mathcal{C})_{\mathtt{W}} \subseteq (\mathcal{P})_{\mathtt{W}}$$

- w : to-be controlled variables;
- c : control variables

 $\mathbb{T}\times\mathbb{W}$

Desired behavior, $\mathcal{D} = \{w \in \mathbb{W}^{\mathbb{T}} : \Psi(w) < \gamma\};\$ γ is a real bound and Ψ is the performance index $(\mathcal{P} \wedge_c \mathcal{C})_w = \{w = (u, y, r) \in \mathbb{W}^{\mathbb{T}} : u(t) = C.(r(t)-y(t))\} \subseteq \mathcal{D} \text{ inconsistent}\}$

Unfalsified control concept

Definition

A controller $K \in \mathfrak{U}$ is said to be *falsified* by measurement information if this information is sufficient to deduce that the performance specification $(r,y,u) \in \mathfrak{O} \ \forall \ r \in \mathcal{R}$ would be violated if that controller were in the feedback loop. Otherwise the control law K is said to be *unfalsified*

Unfalsified control concept

Definition

A controller $K \in \mathfrak{U}$ is said to be *falsified* by measurement information if this information is sufficient to deduce that the performance specification $(r,y,u) \in \mathfrak{O} \ \forall \ r \in \mathcal{R}$ would be violated if that controller were in the feedback loop. Otherwise the control law K is said to be *unfalsified*

Problem

Given

- (a) a measurement information set $P_{data} \subset \mathcal{R} \times \mathcal{Y} \times \mathcal{U}$;
- (b) a performance specification set $\mathfrak{O} \subset \mathcal{R} \times \mathcal{Y} \times \mathcal{U}$;
- (c) a class $\mathfrak U$ of admissible control laws;

determine the subset $\mathfrak{U}_{\mathcal{O}\mathcal{K}}$ of control laws $\mathcal{K}\in\mathfrak{U}$ whose ability to meet the specification $(r,y,u)\in\mathfrak{O}~\forall~r\in\mathcal{R}$ is not falsified by $P_{\mathtt{data}}$

FTC in behavioral context

Solve the problem $< \mathfrak{O}, \mathfrak{C}(\theta), \mathfrak{U} > .$

For any fault, $f_i \in \mathcal{F}, i = 1, ..., n$, construct a set $K \in \mathfrak{U}$ corresponding to each faulty mode instead of determining $\mathfrak{C}(\theta)$, each time fault occur.

FTC in behavioral context

Solve the problem $\langle \mathfrak{O}, \mathfrak{C}(\theta), \mathfrak{U} \rangle$.

For any fault, $f_i \in \mathcal{F}, i = 1, ..., n$, construct a set $K \in \mathfrak{U}$ corresponding to each faulty mode instead of determining $\mathfrak{C}(\theta)$, each time fault occur.

FTC in Behavioral Context

Features

- Not all the controllers need to be put into the closed loop to see which controller satisfies the performance specifications.
- Ofcourse, the scheme is completely model free. Only the presence of right controller in the controller bank that can achieve the desired performance is assumed.
- Shortcomings seen in model based FTC is lowered down.
- In this model free FTC, a set of pre-determined control laws for each (healthy or faulty) mode is equipped instead of estimating the constraints as seen in model based FTC.

Further issues

To be resolved

What will happen if the right controller is not present in the controller bank $? \end{tabular}$

 $\mathbb{T}\times\mathbb{W}$

Further issues

To be resolved

What will happen if the right controller is not present in the controller bank ?

FTC problem $< \mathfrak{O}, \mathfrak{C}(\theta), \mathfrak{U} > .$

Further issues

To be resolved

What will happen if the right controller is not present in the controller bank ?

FTC problem $\langle \mathfrak{O}, \mathfrak{C}(\theta), \mathfrak{U} \rangle$.

Canonical Control in Behavioral framework: is a controller which is generated by the interconnection of plant and desired behavior. The only condition is that the desired behavior must be achievable.

- $\bullet~\mathfrak{O}:$ the desired behavior , $\mathcal D$
- $\mathfrak{C}(\theta)$: behavior of the controlled system satisfies over time
- \mathfrak{U} : the controller behavior, \mathcal{C}

Here we imposed an assumption on desired trajectory that the canonical controller designed achieves the desired behavior

Canonical Control

$$\mathcal{P} = \{(w,c) \in \mathbb{R}^{q+p} \mid R(\xi)w = M(\xi)c\}$$

to-be-controlled variables, w := (r, y); control variables , c := (u, e)

$$R = \begin{pmatrix} 1 & -1 \\ 0 & R_y \end{pmatrix}, M = \begin{pmatrix} 1 & 0 \\ 0 & R_u \end{pmatrix}, G = R_y^{-1} R_u$$

Canonical Control

$$\mathcal{P} = \{(w,c) \in \mathbb{R}^{q+p} \mid R(\xi)w = M(\xi)c\}$$

to-be-controlled variables, w := (r, y); control variables , c := (u, e)

$$R = \begin{pmatrix} 1 & -1 \\ 0 & R_y \end{pmatrix}, M = \begin{pmatrix} 1 & 0 \\ 0 & R_u \end{pmatrix}, G = R_y^{-1} R_u$$
$$(\mathcal{P})_w = \{ w \in \mathbb{R}^q \mid \exists c \in \mathcal{C} \text{ such that } (w, c) \in \mathcal{P} \}$$

$$C = \{ c \in \mathbb{R}^p \mid H(\xi)c = 0 \}, C = C_e^{-1}C_u$$

$$C_e, C_u, R_v, R_u \text{ are the coprime polynomial factorization}$$

-1

Canonical Control

$$\mathcal{P} = \{(w,c) \in \mathbb{R}^{q+p} \mid R(\xi)w = M(\xi)c\}$$

to-be-controlled variables, w := (r, y); control variables , c := (u, e)

$$R = \begin{pmatrix} 1 & -1 \\ 0 & R_y \end{pmatrix}, M = \begin{pmatrix} 1 & 0 \\ 0 & R_u \end{pmatrix}, G = R_y^{-1} R_u$$
$$(\mathcal{P})_w = \{ w \in \mathbb{R}^q \mid \exists c \in \mathcal{C} \text{ such that } (w, c) \in \mathcal{P} \}$$

 $\mathcal{C} = \{ \boldsymbol{c} \in \mathbb{R}^p \mid \boldsymbol{H}(\xi)\boldsymbol{c} = \boldsymbol{0} \}, \, \boldsymbol{C} = \boldsymbol{C}_e^{-1}\boldsymbol{C}_u$

 $\begin{aligned} &\mathcal{C}_e, \, \mathcal{C}_u, \, \mathcal{R}_y, \, \mathcal{R}_u \text{ are the coprime polynomial factorization} \\ &\mathcal{D} = \{ w \in \mathbb{R}^q \mid \exists c \in \mathcal{C} \text{ such that } (w, c) \in \mathcal{P} \mid D(\xi)w = 0 \} \end{aligned}$

Canonical Control

Theorem

Let $\mathcal{P} \subset (\mathbb{R}^{q+p})^{\mathbb{T}}$ be a given plant system, and let $\mathcal{C} \subset (\mathbb{R}^p)^{\mathbb{T}}$ be a controller to be designed. Let $\mathcal{D} \subset (\mathbb{R}^q)^{\mathbb{T}}$ be a desired behavior. Then there exists \mathcal{C} such that $\mathcal{P} \wedge_c \mathcal{C} = \mathcal{D}$ if $\mathcal{D} \subset \mathcal{P}_w$.

desired behavior is a restricted behavior in the manifest behavior, $(\mathcal{P})_{\rm w},$ therefore

$$\Rightarrow \exists L(\xi) : \begin{array}{l} \mathsf{L}(\xi)R(\xi) = D(\xi) \\ \mathsf{L}(\xi)M(\xi)c(t) = 0 \end{array}$$

Above equation induces the kernel representation of a canonical controller acting only on the variable c

Canonical Control

$$\begin{pmatrix} C_e & C_u \end{pmatrix} \begin{pmatrix} D_r & 0 \\ 0 & (D_r - D_y) \end{pmatrix} \begin{pmatrix} u \\ y \end{pmatrix} = 0$$

Desired behavior, $T_d = D_y^{-1}D_r$, Controller behavior, $C = C_e^{-1}C_u$ (u, y): collected input-output trajectories

Canonical Control

$$\begin{pmatrix} C_e & C_u \end{pmatrix} \begin{pmatrix} D_r & 0 \\ 0 & (D_r - D_y) \end{pmatrix} \begin{pmatrix} u \\ y \end{pmatrix} = 0$$

Desired behavior , $T_d = D_y^{-1} D_r$, Controller behavior , $C = C_e^{-1} C_u$

(u, y): collected input-output trajectories

for constructing the canonical controller, assign structure to polynomials

$$C_u(heta) = \sum_{i=0}^m heta_i \xi^i, \ C_e(
ho) = \sum_{i=1}^n
ho_i \xi^i$$

with unknown parameters θ and ρ . Consider a finite interval data of length N,

$$C_{e}(\rho)D_{r}u_{[k,k+N]} = C_{u}(\theta)(D_{r}-D_{y})y_{[k,k+N]}$$
$$\bar{u}_{[k,k+N-n_{a}]} := D_{r}u_{[k,k+N]}, \bar{y}_{[k,k+N-n_{b}]} := (D_{r}-D_{y})y_{[k,k+N]}$$

where n_a and n_b is the degree of D_r and $D_r - D_y$.

Canonical Control

$$\begin{pmatrix} C_e & C_u \end{pmatrix} \begin{pmatrix} D_r & 0 \\ 0 & (D_r - D_y) \end{pmatrix} \begin{pmatrix} u \\ y \end{pmatrix} = 0$$

Desired behavior , $T_d = D_y^{-1} D_r$, Controller behavior , $C = C_e^{-1} C_u$

(u, y): collected input-output trajectories

for constructing the canonical controller, assign structure to polynomials

$$C_u(\theta) = \sum_{i=0}^m heta_i \xi^i, \ C_e(
ho) = \sum_{i=1}^n
ho_i \xi^i$$

with unknown parameters θ and ρ . Consider a finite interval data of length N,

$$C_{e}(\rho)D_{r}u_{[k,k+N]} = C_{u}(\theta)(D_{r} - D_{y})y_{[k,k+N]}$$
$$\bar{u}_{[k,k+N-n_{a}]} := D_{r}u_{[k,k+N]}, \bar{y}_{[k,k+N-n_{b}]} := (D_{r} - D_{y})y_{[k,k+N]}$$

where n_a and n_b is the degree of D_r and $D_r - D_y$. In matrix form

Fault tolerant control scheme

Functioning

- Reconfiguration mechanism (RM) unfalsify the controllers which exists in the controller bank.
- Controller synthesis block synthesize a set of new controllers using canonical control concept for a set of considered desired trajectories.

Features of the scheme

- For the N potential controllers in the bank, N performance indexes J(r^{fict}_{Ci}, u, y) are computed and only those controllers are marked unfalsified which satisfies J(w_i) ≤ γ.
- The control selection algorithm has input $J(w_i)_{i=1}^N$ and output σ , the switching signal.

Features of the scheme

- For the N potential controllers in the bank, N performance indexes J(r^{fict}_{Ci}, u, y) are computed and only those controllers are marked unfalsified which satisfies J(w_i) ≤ γ.
- The control selection algorithm has input $J(w_i)_{i=1}^N$ and output σ , the switching signal.
- To avoid arbitrary small switching times, a lower bound on the length of interval between successive switches is imposed.
- This lower bound during which a controller is active in the loop is called dwell time and the measured data is collected in this time interval $[t_n, t_n + \tau_D]$.

Features of the scheme

- For the N potential controllers in the bank, N performance indexes J(r^{fict}_{Ci}, u, y) are computed and only those controllers are marked unfalsified which satisfies J(w_i) ≤ γ.
- The control selection algorithm has input $J(w_i)_{i=1}^N$ and output σ , the switching signal.
- To avoid arbitrary small switching times, a lower bound on the length of interval between successive switches is imposed.
- This lower bound during which a controller is active in the loop is called dwell time and the measured data is collected in this time interval [t_n, t_n + τ_D].
- The logic is then realized through

$$\sigma(t) = \sigma(t_n), \text{ for } t_n \leq t < t_{n+1}$$

with the updating rule

$$\sigma(t_{n+1}) = \begin{cases} \sigma(t_n), \text{ if } C_{\sigma(t_n)} \text{ is not invalidated} \\ \hat{i} = \arg \min\{J(w_i) \mid J(w_i) \le \gamma\}_{i \ne \sigma(t_n)}, \end{cases}$$

Tushar Jain, CRAN Journée du Groupe de Travail S3

Features of the scheme

After the time interval [t, t + τ_D] if J(w_i)^N_{i=1} > γ, a new set of controller is generated using

$$\begin{pmatrix} C_e & C_u \end{pmatrix} \begin{pmatrix} D_r & 0 \\ 0 & (D_r - D_y) \end{pmatrix} \begin{pmatrix} u_{\tau_D} \\ y_{\tau_D} \end{pmatrix} = 0$$

where (u_{τ_D}, y_{τ_D}) are the plant trajectories collected in the time interval $[t, t + \tau_D]$.

- For N' desired trajectory, N' new controllers are generated and added into the controller bank.
- If one of N' desired trajectory achieves the desired behavior, then that particular controller get switched into the feedback loop by RM.

Simulation

$$P = \text{ unknown plant }, C_1 = \frac{-s+1}{0.3s+1}, C_2 = \frac{-s-1}{0.3s+1}, C_3 = \frac{-1.049s - 1.176}{s+2.978}$$

Desired trajectory : $D_y(\xi) = \xi^2 + 1.6\xi + 1, D_r(\xi) = -\xi + 1, J_{C_i} = \int_t^{t+\tau_D} (r_{C_i} - y)^2 dt$

 $\begin{array}{l} \Longrightarrow \gamma = 31, \tau_D = 10 sec \\ \Longrightarrow J(w_i) \leq \gamma = 31 \\ \Longrightarrow C_2 \text{ is in the feedback loop. Fault occurs at t=0sec.} \\ \Longrightarrow \text{ Initially two controllers } C_1 \text{ and } C_2 \\ \text{are installed in the bank.} \\ \Longrightarrow \text{ At t=10sec, } J(r_{C_1,u,y})_{i=1}^2 > \gamma. \\ \text{Therefore, a new controller is designed from the collected trajectories.} \\ \end{array}$

 \implies The new controller C₃ is now installed in the bank and tested for its feasibility.

 \Longrightarrow RM block unfalsify the new controller during the next dwell time.

Conclusions

- Fault tolerant control problem is studied in the behavioral theoretic framework.
- Real time model free reconfiguration mechanism is suggested to achieve fault tolerance.
- The limitation for the presence of right controller in a pre-determined controller bank is released.
- Future work includes the consideration of different types of fault for the MIMO system.

Conclusions

- Fault tolerant control problem is studied in the behavioral theoretic framework.
- Real time model free reconfiguration mechanism is suggested to achieve fault tolerance.
- The limitation for the presence of right controller in a pre-determined controller bank is released.
- Future work includes the consideration of different types of fault for the MIMO system.

Publications

- A model based 2-DOF fault tolerant control strategy, 18th IEEE Mediterranean Conf. Control and Automation, June 2010.
- A real time router fault accommodation, IEEE SysTol'10, Oct.2010
- Synergy of canonical control and unfalsified control concept to achieve fault tolerance, IFAC World Congress, 2011 (submitted)

Thank you for your attention!!