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� Modern methods for robust and gain scheduled controller 
design call for advanced modelling and identification 
techniques

� Critical issue: deriving models in which the dependence 
from operating point information and/or uncertain 
parameters is explicit

� Linear Parametrically Varying (LPV) models: a useful 
modelling approach to bridge the gap between 
identification and controller design

� Major trade-off:

Introduction

black vs grey vs white box
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4LPV models

“Time varying systems, the dynamics of which are functions of a measurable, 
time-varying parameter vector δ.”

Common assumptions on parameter vector δ:
� Component-wise bounded
� Component-wise rate-bounded

� The equations

describe a whole family of time-varying systems.

� A specific time-varying system is defined once a realisation δ(t) is chosen. 

� A given LPV system can give rise to very different behaviours!
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5Structure of LPV models – state-space form

� Affine parameter dependence (LPV-A):

� Input-affine parameter dependence (LPV-IA):

� only B and D are function of δ
� A and C are constant

� Rational parameter dependence (LPV-R):
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6Structure of LPV models – state-space form

� Linear fractional representation parameter dependence 
(LPV-LFR):

P

∆(δ)

u(t)

w(t)

y(t)

z(t)

Of course the LFR is potentially 
much more general.
We will come back to this.
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7Discrete-time LPV models in input-output form

In the literature, input-output models of the type

have been considered, which are parameter-dependent 
extensions of discrete-time LTI input-output models.

As for state-space models, the ai’s and bj’s can be
� Affine
� Rational

� Linear Fractional functions of the parameter vector δ.
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8Issues in input-output to state-space conversion

In the LTI case the equivalence between

and
where T is square and non singular, is well known.

This motivates a number of identification methods which

1. Perform an initial (e.g., nonparametric) estimation of the input-output 
behaviour

2. Refine the initial estimate
� either directly in state-space form
� or in input-output form, followed by state-space conversion
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9Issues in input-output to state-space conversion

LPV models, however, are time-varying. In discrete-time:

� T will be parameter dependent ) LTI input-output and state-space equivalence 
should be used very carefully!

� In particular:
� The change of state-space basis will depend Iocally on the value of the 

parameters and on their rate of change

� The choice of input-output vs state-space models should be based on the 
eventual goal of the identification exercise, as conversion is not trivial 
(see Toth 2008).
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10LPV model identification: an overview

Two broad classes of methods can be defined:

� Global approaches
� a single experiment ) the parameter is also excited
� a parameter-dependent model is directly obtained

� Local approaches
� multiple experiments ) constant parameter values
� many LTI models are obtained, which have to be 

interpolated
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11Overview of the literature: global approach

� Input/output models
� (Bamieh and Giarre’,1999 & 2002) 
� (Previdi and Lovera, 2003 & 2004) 
� (Toth et al., 2007 & 2008)

� State space models
� (Nemani et al., 1995)
� (Lee and Poolla, 1997 & 1999)
� (Lovera et al., 1998) 
� (Sznaier and Mazzaro, 2001 & 2003)
� (Verdult and Verhaegen, 2002)
� (Felici et al., 2007)
� (van Wingerden and Verhaegen, 2009)
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12(Nemani et al., 1995) 

� Identification of single input LPV-LFT models with a scalar 
parameter 

� State vector assumed available for measurement

� Both cases of noise free and noisy state measurement are 
taken into account, together with process noise in the 
state equation.

� The problem is solved using RLS; the use of IV-RLS is 
also proposed to deal with non-white measurement noise.
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13(Lovera et al. 1998)

� Identification of MIMO LPV-A models

� No restrictive assumptions on the number of parameters

� Possibly noisy state vector measurement available

� Batch solution using IV least squares 
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� A maximum likelihood (ML) algorithm for the identification 
of MIMO LPV-LFT models is proposed

� The algorithm is based on PEM and is strongly related to 
classical methods for the ML identification of ARMA and 
ARMAX models

� The computation of the gradient and of the hessian is 
performed by means of (LPV) filtering operations 

� Major issue related to this algorithm: initialisation
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15(Sznaier and Mazzaro, 2001 & 2003)

Consider a model class of the form
with

where 
� the Np Gi(z) transfer functions are known,
� Gnp(z) is a stable, norm-bounded operator

� η is a bounded measurement noise.

An approach is provided which allows to test consistency (in 
the form of LMIs) of the a priori modelling information with 
the results (measured y and parameters) of experiments.
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16Subspace-based methods
(Verdult and Verhaegen, 2002), (Felici et al., 2007), (van Wingerden and Verhaegen, 2009)

� Extensions to LPV systems of classical subspace model 
identification algorithms for LTI models

� Model class
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17Subspace-based methods

� General approach:
� Construct a data equation relating inputs, outputs and states
� Estimate the state sequence 
� Reconstruct the state space matrices

� Main issues: 
� Persistency of excitation conditions only partially understood
� The number of rows in the data matrices grows exponentially with

the system order

� Solutions available in the literature: 
� use the RQ factorisation to select the dominant rows in the data 

matrices and discard the rest
� use kernel methods to compress the row spaces of the data 

matrices

� Available methods are reliablebut still limited in terms of problem size.
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18LPV model identification: an overview

Two broad classes of methods can be defined:

� Global approaches
� a single experiment ) the parameter is also excited
� a parameter-dependent model is directly obtained

� Local approaches
� multiple experiments ) constant parameter values
� many LTI models are obtained, which have to be 

interpolated
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19Overview of the literature: local approach

Local approach
� (Steinbuch et al. 2003)
� (Paymans et al. 2006 & 2008)
� (Toth et al. 2007)
� (Lovera and Mercere 2007)

Issues with local approaches:

� Numerical accuracy: poorly conditioned canonical forms used in local 
problems ) ill-conditioning in the interpolation

� Consistency of the interpolation procedure: 
� Input/output form ) interpolating transfer function coefficients
� State space form ) consistency of state space basis
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20The method of Steinbuch et al.

The algorithm (applicable to SISO or MISO models) can be 
summarised as follows:

1. Local experiments ) nonparametric estimates           of the local 
frequency response

2. Parametric TFs
are fitted to the local frequency responses 

3. Each TF is converted to Canonical Controllability Form

4. The parameters of the local models are interpolated

5. The model is converted to LFT form
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21The method of Steinbuch et al.: discussion

� Numerical issues: the CCF is ill conditioned, so the 
interpolation step will be numerically very sensitive.

� Method restricted to 
� low order models
� without sensitive poles/zeros (lightly damped complex 

conjugate poles)

� State space interpolation: no guarantee that all local 
models are in the same state-space basis.



Marco Lovera

22The method of Paijmans et al.

� Local models are parameterised using poles, zeros and gain and 
factored into first and/or second order subsystems

� Each local model is decomposed using the following rules:
� A second order system is created for each pair of c.c.poles
� All pairs of c.c. zeros are added to existing second order systems
� For each remaining real pole a first order system is created
� The remaining real zeros are added to the first and second order

subsystems

� Parameter-dependent poles and zeros loci are optimised in order to fit 
the pole/zero maps of the local models.
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23The method of Paijmans et al.: discussion

� Limited to SISO systems

� Interpolation step very critical – requires manual 
intervention

� Constraints introduced to preserve affine parameter 
dependence: Bτ and Dτ matrices of local models must be 
constant.
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24The method of Lovera and Mercere

The proposed method addresses numerical issues, as follows.

1. Linear discrete-time state space models are estimated for each 
operating point, using time- or frequency-domain subspace 
algorithms

2. The identified models are balanced using the numerical algorithm of 
(Laub et al. 1987)

3. If necessary, the balanced models are converted to continuous-time 
using a bilinear transformation

4. The p-dependent model is obtained by interpolation of the state-
space matrices of the local models, made possible by the properties 
of balanced realisations

5. The model can be eventually converted to LFT form.
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27A numerical example 

0 1 2 3 4 5
-0.4

-0.2

0

0.2

0.4
δ=0.5+0.2sin(5t)

0 1 2 3 4 5
-5

0

5

10
x 10

-3 δ=0.5+0.2sin(5t)

0 1 2 3 4 5
-0.4

-0.2

0

0.2

0.4
δ=0.5+0.2sin(10t)

0 1 2 3 4 5
-0.01

-0.005

0

0.005

0.01
δ=0.5+0.2sin(10t)

0 1 2 3 4 5
-0.4

-0.2

0

0.2

0.4
δ=0.5+0.2sin(20t)

Time [s]
0 1 2 3 4 5

-0.02

-0.01

0

0.01

0.02
δ=0.5+0.2sin(20t)

Time [s]



Marco Lovera

28Outline

� Introduction and motivation

� LPV model classes: 
� state-space form
� input-output form

� Overview of LPV model identification

� Application: 
LPV Identification in Virtualized Service Center Environments

� Integrated LFT modelling and identification of physical systems

� Perspectives and conclusions



Marco Lovera

29Energy Management in Service Centers

Data Center issues
� Energy consumption

• 2% of CO2 emission

• By 2012 energy costs will be 40% of TCO
– Related costs: cooling, UPS, …

� QoS guarantees and workload variability

� Dynamic resource managment
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� Hardware resources (CPU, RAM, ecc...) are partitioned and shared 
among multiple virtual machines (VMs) 

� The virtual machine monitor (VMM) governs the access to the 
physical resources among running VMs

� Performance isolation and security

Virtualization

A single OS

VMs run 

possibly 

different OSs

Enabling technologies
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Dynamic Frequency Scaling (DFS)

• Modern CPUs can work in multiple p-states (performance-state)
characterized by a given value of voltage and clock frequency

• A p-state transition implies a CPU clock update and, hence, different cost 
and performance

• Reduced overheads

Enabling technologies
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32Autonomic self-management techniques

� Utility Based Approach: Queueing Network model + 
Optimization framework (e.g., IBM’s Tivoli)
� Multiple decision variables
� Long term time horizon (several minutes)
� Steady state assumption

� Control Theory Approach
� Short time frame (minutes, seconds)

� System identification used to develop models for:
• Capturing system transients
• Taking into account workload variability

� Advanced control design techniques used to:
• Ensure closed-loop stability
• Guarantee performance (QoS) levels a priori
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33System Identification:
models for a multi-class virtualised environment

� Multi-class system

� λk
i: requests arrival rate

� sk
i: service time, CPU time required to serve a single request

� Tk
i: response time, overall time a request stays in the system

� φk
i: VMM scheduling parameters

� Example: two VMs environment
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34Experimental setting

� A workload generator
� Apache JMeter custom extension 

� Micro benchmarking web application
� CPU service time generated according to deterministic 

(identification), exponential, lognormal, Pareto (validation) 
distributions 

� Application instrumentation (otherwise, ARM API or  kernel-based 
measurement)

� VMM monitor: Xen 3.0. Two instances of the micro-benchmarking 
Web service applications hosted in two Linux Fedora VMs

� Validation: synthetic workload inspired by a real-world usage 
(Politecnico di Milano Web site and a large financial system, 24 hours)
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35Multi-class virtualised environment: 
workload and performance metrics
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36Preliminary conclusions and future work

� LPV model identification seems suitable to model Web-servers 
dynamics

� Also tested recursive identification algorithms (i.e., for on-line 
applications), with promising results

� Current work aims at:

� Identification of dynamic models for:
• Admission control
• Large scale virtualised set-up 

� Control design for:  
• Single-class systems (admission and DVS control)
• MIMO virtualised environments
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38The control-oriented modelling process

It is often suggested
to use data at the simulator
level: “model calibration”
� Simulink
� Dymola
� “MoCaVa” (T. Bohlin)
…is this sensible?

Prior knowledge

Experimental data
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39The control-oriented modelling process
(revisited)

Prior knowledge

Experimental data

T
he present w

ork
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40From L. Ljung’s IFAC’08 plenary paper…

This is 
precisely 
our goal!
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41Main advantages

� Physical modelling is performed in the appropriate 
language, with the appropriate tools (Modelica and, e.g., 
Dymola or OpenModelica)

� Support for the necessary symbolic manipulation already 
provided by:
� Existing Modelica compilers
� Tools such as the Matlab/Scilab LFR Toolbox

� Parameter estimation is performed in the appropriate 
framework, i.e., analysed is possible
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42Introduction: O-O modelling and Modelica

� Modelica is an open, equation-based, object-oriented (O-O) modelling 
language, defined from 1997 by a non-profit organization.

� Models are written as differential-algebraic equations (DAEs): 
� easy model development (as on paper) and customization
� easy documentation (models are self-documenting)
� native multi-physics modelling

Main features of the language:

� Complex models built by connections through a-causal physical ports 

� O-O features such as abstract interfaces, inheritance and replaceable models 
support model re-use and flexibility 

� Many applications in automotive, aerospace, mechatronics, robotics, electrical 
machinery, hydraulics, thermodynamics, energy systems…

� Both commercial and open-source compilers are available 
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Introduction: LFR modelling and tools

• Tools exist to build and manipulate LFRs via the block-diagram 
metaphor: LFR Toolbox (Onera/DLR) for Matlab and Scilab

• Cannot be used directly for O-O a-causal physical models

• Proposed solution: based on the integration of multiple tools

– OpenModelica compiler 
– LFR Toolbox 
– Symbolic Toolbox

Bridge the gap 
between O-O models and 
LPV/LFT sysid & control
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Preliminary DAE manipulation

DAEs of the O-O model

BLT 
transformation Index-1 DAE system

Index reduction and 
change of state variables

Re-ordered sets of
implicit eq.s

contains the re-ordered unknowns 

Flattening
model XYZ
Real x, y;
input Real u;
parameter Real T;

equation
T*der(x) = -x +u;
y = u + x;

end XYZ;

Modelica code of the model



Marco Lovera

Getting rid of redundant parameters

The original Modelica model contains binding equations for 
all parameters (e.g.,   p1 = p2 – p3 ,    p2 = 10,    p3 = 20)

• Binding equations for uncertain parameters p (a subset of 
the parameters p0) are ignored

• The remaining binding equations are solved symbolically
→ symbolic expressions for p0 as functions of p

• Such expressions are substituted symbolically in the 
reordered equations:
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Assumption: the index-1 system is well-posed. 
Then

letting

Recursive formulation 
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Building the LFR

Easy interpretation in terms of a block diagram from the 
inputs x, u to all 

the unknowns of the problem:

• Each Ψj block is represented as an elementary LFR

• Φj = 0 linear (possibly depending on the uncertain 
parameters!)
→ LFR with uncertain parameters in ∆

• Φ = 0 nonlinear ) LFR with a nonlinear feedback block 
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Building the LFR - II

• By selecting the rows in the output equations, it is possible 
to obtain the LFR to compute all derivatives and the 
required output variables only

• By suitably re-arranging the corresponding matrices, the 
LFR can then be brought in the standard form
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49Discretisation and parameter estimation
(focus on the linear case)

� Recall that the bilinear transformation
is actually an LFT

� Discretisation of LPV/LFT models: 
interesting, partially open problem, 
see (Apkarian 1997), (Imbert 2001),…

� The output error algorithm of (Hsu et al. 2008): M-∆ interconnection, with

� Cost function:
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Conclusions

• LFRs are useful for system identification, control system analysis and design 
BUT

• existing LFR tools only deal with causal model specifications

• An algorithm has been proposed to translate generic a-causal, O-O nonlinear 
models with uncertain parameters into LFRs

• This bridges the gap between tools for physical system modelling and 
identification/control techniques based on LFRs

• The algorithm has been implemented within the OpenModelica compiler and 
MATLAB's Symbolic Toolbox, using Onera/DLR's LFR Toolbox. 

• The resulting tool will be available as open source under GPL
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52Perspectives - a personal view:
on square pegs and round holes...

A fact: LPV model identification hardly used at all in practice.

There might be many reasons for this...

� Most tools are not available in public domain

� Most methods require unrealistic assumptions

� The obtained models do not match the 
existing design methods and tools: 
the “square peg-round hole” problem
of system identification!
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53IEEE TCST Special Issue on 
“Applied LPV Modeling and Identification”

Deadline for submissions: April 30 2009!
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55Concluding remarks

� A (quick) overview of the field of black-box LPV model 
identification has been provided

� A discussion of the pros and cons of each approach has 
been offered

� A case study of black-box LPV identification in the area of 
computing systems has been illustrated 

� Current results in the integrated modelling and 
identification of LFT models have been presented.


