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Introduction 

Monitor, Detect, Predict, Anticipate = Prevent and avoid such catastrophes 

 Reliability    Availability    Security    Costs 
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Introduction 
Prognostics and health management (PHM) 
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Introduction 
Prognostic definitions 

 
• An advance indication of a future event. [Oxford dictionary] 

 
• Estimation of time to failure and risk for one or more existing and 

future failure modes. [ISO 13381-1, 2004]  
 

• Estimation of the time before failure, or the remaining useful life, 
and the associated confidence value. [Tobon-Mejia, 2012] 
 

• Indicates whether the structure, system or component of interest 
can perform its function throughout its lifetime with reasonable 
assurance and, in case it cannot, to estimate the remaining useful 
life. [Zio, 2010] 
 

• Predicts how much time is left before a failure (or more) occurs 
given the current machine condition and past operation profile. 
[K.S. Jardine, 2006] 
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Objectives 
 
• Assess the current status of critical component.  

 
• Predict the remaining useful life (RUL) time at which the critical 

component will no longer perform its intended function. 

Healthy 
Health 

 deterioration End of life 
Current time 

tc 
RUL 

Introduction 
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Introduction 

• Domain knowledge 
 

• Measurements 
– Noisy 
– Imprecise 
– Incomplete 
 

• Model 
– Un-modeled phenomena 
– Approximation and simplification 
 

• Process 
– Unforeseen future loads and environmental conditions 
– Stochastic 

Challenges 
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The method 

• Variable selection based on mining relationships between 
signals. 

• Extract monotonic trends to represent evolution of the system. 
• Using discrete Bayesian filter for online estimation. 
• RUL prediction using k-NN and Gaussian process regression. 

 

Overview 
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The method 

General assumptions 
• Domain knowledge 

– No. 
 

• Measurements 
– Input signals: multidimensional time series matrix DNxM where N is number of 

observations and M is number of sensors. 
– Run to failure. 
– Relations between signals are important. 

 

• Model 
– Data set contains enough samples for training. 
– Level: component (not system). 

 

• Process 
– Operating conditions: constant. 
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The method 

Input data 
 
• Multidimensional time series sensory data. 
 
• Can be represented as a matrix DNxM  

– Where, N is number of observations and M is number of sensors, i.e. variables. 

 
• Signals that have non random relationships contain information 

about system degradation.  
 

• The challenge is to automatically select the interesting variables. 
 

16 28/1/2014 S3 GT Meeting 



The method 

Offline  
DB 

 

Health 
Indicator 

Trend 
Construction 

Offline 
Signals 

Variable 
Selection 

17 28/1/2014 S3 GT Meeting 

Overall scheme 
 

Online 
Estimation 

Health 
Indicator 

Trend 
Construction 

Online 
Signals 

Posterior 
> 

threshold  

k-NN 

RUL 
Prediction 

GPR 

Online Trends 

Yes 

No 



The method 
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Variable selection 
 
1. Symmetrical uncertainty measure: 
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Variable selection 
 
1. Symmetrical uncertainty measure: 

 
 
 

2. Hierarchical clustering and cut off 
distance was selected automatically. 
 
 

 



The method 

Variable selection 
 
1. Symmetrical uncertainty measure: 

 
 
 

2. Hierarchical clustering and cut off 
distance is selected automatically. 
 

3. Clustering quality using normalized value 
of distortion measure of the neurons. 
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The method 

Trend construction 
 
• Using principle component analysis 

 
 

– Where λi is eigenvalue and vi is eigenvectors for 
covariance matrix of C of the selected features. 

 
 

• Linear projection 
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The method 

Trend construction 
 
• Using empirical mode decomposition 

 
 
 

– Where X(t) is input signal, imf is intrinsic mode 
function and r(t) is residual. 

 
• The residual should be constant or 

monotonic function. 
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The method 

Trend construction 
 

Non degraded Degraded 
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The method 

Health indicator 
 
• 4 features are extracted 

– Two coefficients of a linear regression curve fit of the 
signal until time “t”. 

– Mean of the signal until time “t”. 
– Variance of the signal until time “t”. 
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• 4 features are extracted 
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• The result is a health indicator. 
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The method 

Health indicator 
 
• 4 features are extracted 

– Two coefficients of a linear regression curve fit of the 
signal until time “t”. 

– Mean of the signal until time “t”. 
– Variance of the signal until time “t”. 

 
• The result is a health indicator. 
 
• The features are labeled according to the 

EOL of each trend. 
 

EOL = 148 

EOL = 107 

EOL = 66 
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The method 

State estimation: Bayes filter 
 
• Critical components are dynamic systems that possess internal 

state which can characterize the system health. 
 

• Internal state can not be measured directly. 
 

• Sensory data are used to deduce the internal state. 
 

• The evolution of the state and measurements are governed by 
probabilistic laws. 
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The method 

State estimation: Bayes filter 
 
• Markovian internal state will be denoted as xt and the sensory 

data are denoted as zt at time t. 
• Two main quantities need to be observed:  

– State transition probability: p(xt | xt-1) 

– Measurement transition probability: p(zt | xt) 

• Probability over state variable xt will be denoted as: 
– pposterior(xt) =  p(xt | z1:t). 

• Prediction probability distribution denoted as: 
–  pprior(xt) =  p(xt | z1:t-1) 
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The method 

State estimation: Bayes filter 
 
• Bayes filter: a general algorithm for calculating the prior and 

posterior probabilities. 
 
 
 

 
 
 
 

• Estimates the probability distribution recursively from the data.  
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The method 

State estimation: Bayes filter 
 
• Can be implemented in different ways such as:  

– Kalman filter. 
– Extended Kalman filter. 
– Particle filter. 
– Histogram filter. 

 

• Any implementation requires knowing three probability 
distributions: 
1. Initial probability. 
2. Measurement transition probability. 
3. State transition probability. 
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The method 

State estimation: Bayes filter 
 

• Known as histogram filter for continuous 
states. 
 
 
 
 
 
 

 
• Decomposes the state space into many 

regions and represents the posterior by a 
histogram. 
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The method 

State estimation: Bayes filter 
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The method 

State estimation: Bayes filter 
 
• Example of estimating the 

trend of the projected 
capacity and voltage variables 
at discharge. 
 
 
 

• RMS = 0.0148 
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The method 
Online selection (k-NN) 
 

• A k-NN classifier for objects based on closest 
training examples in the feature space. 

 

 

t= 40 K-NN 

Offline trends 

Online trend at 
time = 40 

EOL = 148 

EOL = 107 

EOL = 66 
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The method 

RUL prediction 
 
• Using Euclidean distance. 

 
– Between online signal and database till 

time “t”. 
 

– Efficient for this particular problem. 
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The method 

Gaussian process regression (GPR) 
 

• The classification error tends to be very high 
when new data, which the algorithm did not 
see before, emerge. 

 

 
t= 40 K-NN 

IP trend at time = 40 
True EOL = 107 

Offline trends 

EOL = 148 

EOL = 66 
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The method 

Gaussian process regression (GPR) 
 
• To map from online samples x to the most similar group of 

offline trends y GPR is proposed. 
 
 

• GPR defines the prior for output f(x) in form of distribution over 
functions specified by Gaussian process (GP) and Gaussian 
noise: 
 

 
• GP function f(x) is specified by a mean function m(x) and 

covariance function k(x,x´) collected for all possible pairs of the 
input vector x. 
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The method 

Gaussian process (GP) 
• The posterior probability distribution can be written as: 

 

 

 

• The best estimate for y*, i.e. RUL, is the mean of this 
distribution 

 

• The uncertainty in the estimate is represented in the variance. 

 

 46 28/1/2014 S3 GT Meeting 



The method 

Online 
Estimation 

Health 
Indicator 

Trend 
Construction 

Online 
Signals 

Posterior 
> 

threshold  

k-NN 

RUL 
Prediction 

GPR 

Online Trends 

Yes 

No 

47 28/1/2014 S3 GT Meeting 

Overall scheme 
 

Offline  
DB 

 

Health 
Indicator 

Trend 
Construction 

Offline 
Signals 

Variable 
Selection 



The method 

Online 
Estimation 

Health 
Indicator 

Trend 
Construction 

Online 
Signals 

Posterior 
> 

threshold  

k-NN 

RUL 
Prediction 

GPR 

Online Trends 

Yes 

No 

Offline  
DB 

 

Health 
Indicator 

Trend 
Construction 

Offline 
Signals 

Variable 
Selection 

48 28/1/2014 S3 GT Meeting 

Overall scheme 
 



Applications and results 

NASA batteries 
 
• 34 datasets are used 

 
• 11 signals are used in the experiment 

– 5 charging. 
– 6 discharging. 
 

• Two interesting relations are selected 
– Discharging voltage 
– Capacity 
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Applications and results 

NASA batteries 
 

• Two health indicators correlated with the capacity 
– Variance 
– Slope 
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Applications and results 

NASA batteries 
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Applications and results 

NASA batteries 
 

• Three fold cross validation. 
 

• Percentage error calculated. 
 

• Three data sets were unique. 
 

52 

Fold #1 Fold #2 Fold #3 Total error (Avg.) 

Without unique data 27.11% 23.73% 18.01 22.94% 

With unique data 38.75% 37.11% 36.89% 37.58% 
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Applications and results 

NASA Turbofan engine data 
• 2 datasets are used 

– 100 engine data for training  
– 100 engine data for testing 

 
• 21 signals are used in the experiment 

– Total temperature at fan inlet  
– Pressure at fan inlet   
– Demanded fan speed …. 

 
• Two interesting relations are selected 

– Physical core speed  
– Corrected core speed  
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Applications and results 

NASA turbofans 
 

• All training data used for training and 
testing for test. 
 

• Percentage error calculated. 
 

• Only one prediction at the pre-
specified critical time. 
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k-NN GPR  Integrated 

12.74% 11.48% 11.41% 

28/1/2014 S3 GT Meeting 



Conclusion & future work 

• A data-driven prognostic method for condition assessment and RUL 
prediction is proposed. 
 

• The method can be identified as direct RUL Bayesian learning 
approach.  
 

• The uncertainty about the measurements and the predictions 
represented by conditional probability.  
 

• Two health indicators shown to be correlated with degradation 
mechanism.  
 

55 28/1/2014 S3 GT Meeting 



Conclusion & future work 

• Apply the method on data sets with variable operating conditions. 
 

• Test the method after introducing maintenance interventions.  
 

• Test the proposed method on new application. 
 

• Explore other classification/regression models. 
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Questions? 
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