

A Data-driven Approach for Remaining Useful Life Prediction of Critical Components

Ahmed Mosallam

ahmed.mosallam@femto-st.fr

Supervisors:

Prof. Noureddine ZERHOUNI

Dr. Kamal MEDJAHER

Outlines

1. Introduction

2. The method

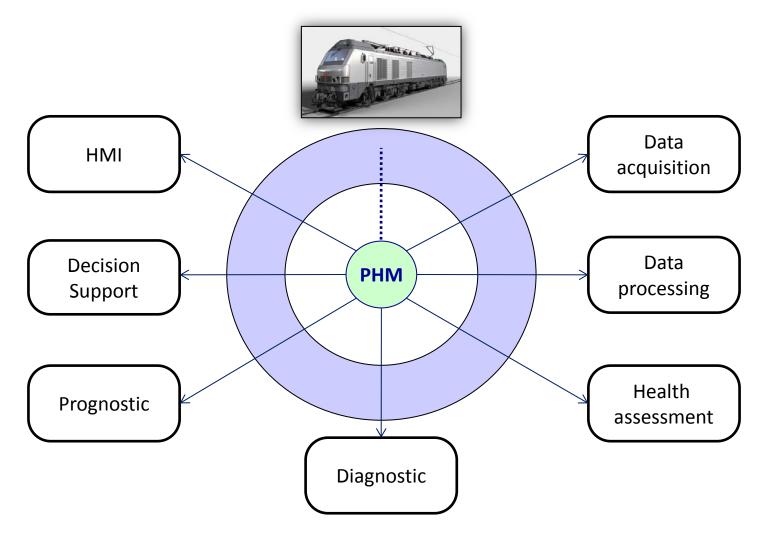
3. Applications and results

4. Conclusion & future work

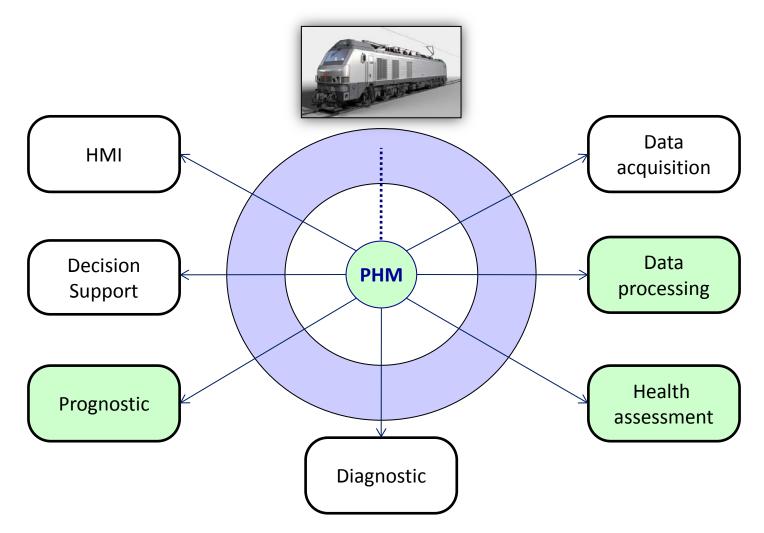
Monitor, Detect, Predict, Anticipate = Prevent and avoid such catastrophes

₹ Reliability
 Availability
 Security
 Security
 Costs

Prognostics and health management (PHM)



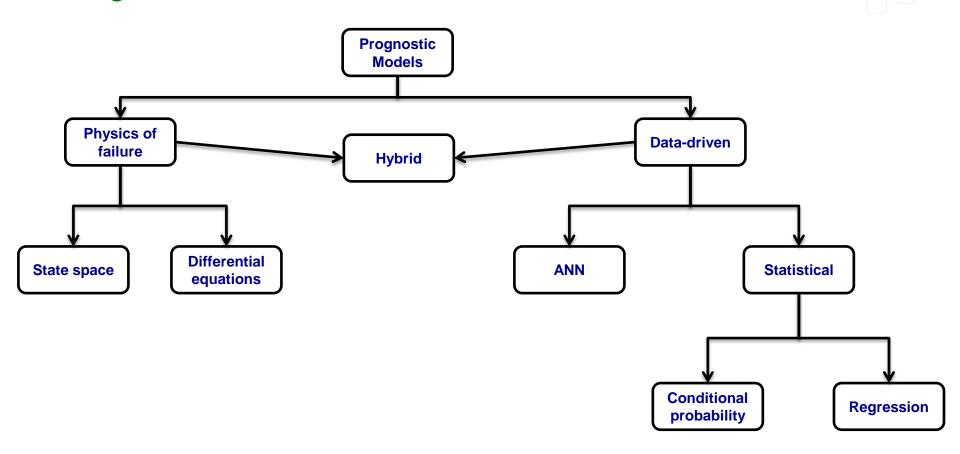
Prognostics and health management (PHM)



Prognostic definitions

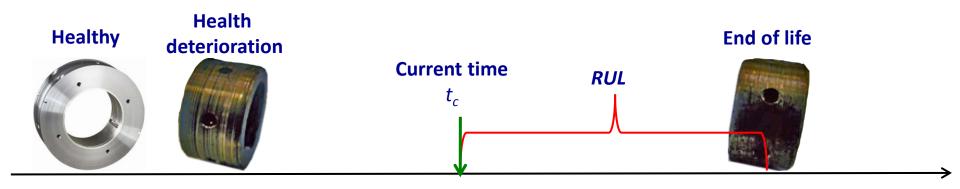
- An advance indication of a future event. [Oxford dictionary]
- Estimation of time to failure and risk for one or more existing and future failure modes. [ISO 13381-1, 2004]
- Estimation of the time before failure, or the remaining useful life, and the associated confidence value. [Tobon-Mejia, 2012]
- Indicates whether the structure, system or component of interest can perform its function throughout its lifetime with reasonable assurance and, in case it cannot, to estimate the remaining useful life. [Zio, 2010]
- Predicts how much time is left before a failure (or more) occurs given the current machine condition and past operation profile. [K.S. Jardine, 2006]

Prognostic models



Objectives

- Assess the current status of critical component.
- Predict the remaining useful life (RUL) time at which the critical component will no longer perform its intended function.

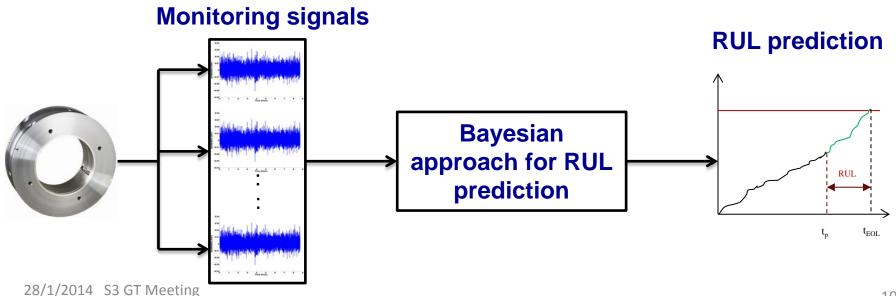


Challenges

- Domain knowledge
- Measurements
 - Noisy
 - Imprecise
 - Incomplete
- Model
 - Un-modeled phenomena
 - Approximation and simplification
- Process
 - Unforeseen future loads and environmental conditions
 - Stochastic

Overview

- Variable selection based on mining relationships between signals.
- Extract monotonic trends to represent evolution of the system.
- Using discrete Bayesian filter for online estimation.
- RUL prediction using k-NN and Gaussian process regression.



10

General assumptions

- Domain knowledge
 - No.

Measurements

- Input signals: multidimensional time series matrix D_{NxM} where N is number of observations and M is number of sensors.
- Run to failure.
- Relations between signals are important.

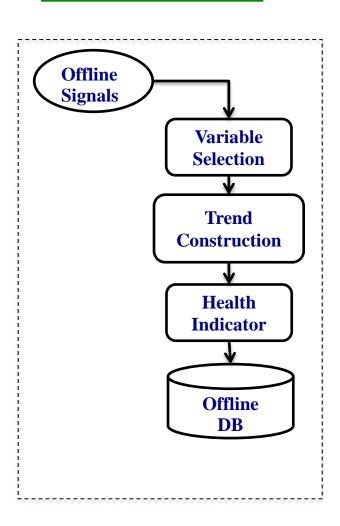
Model

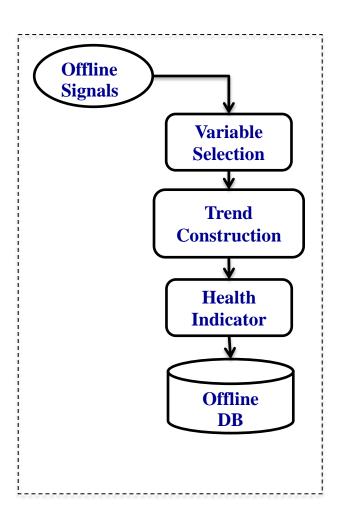
- Data set contains enough samples for training.
- Level: component (not system).

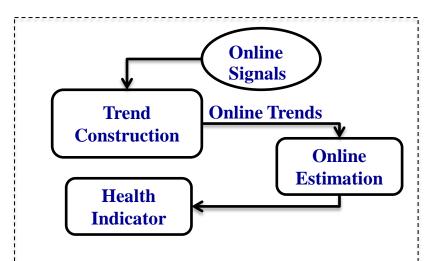
Process

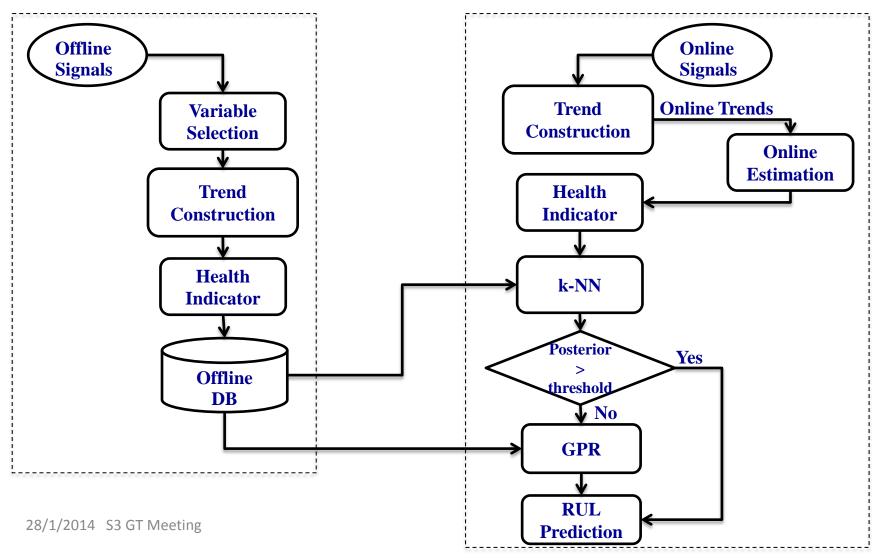
Operating conditions: constant.

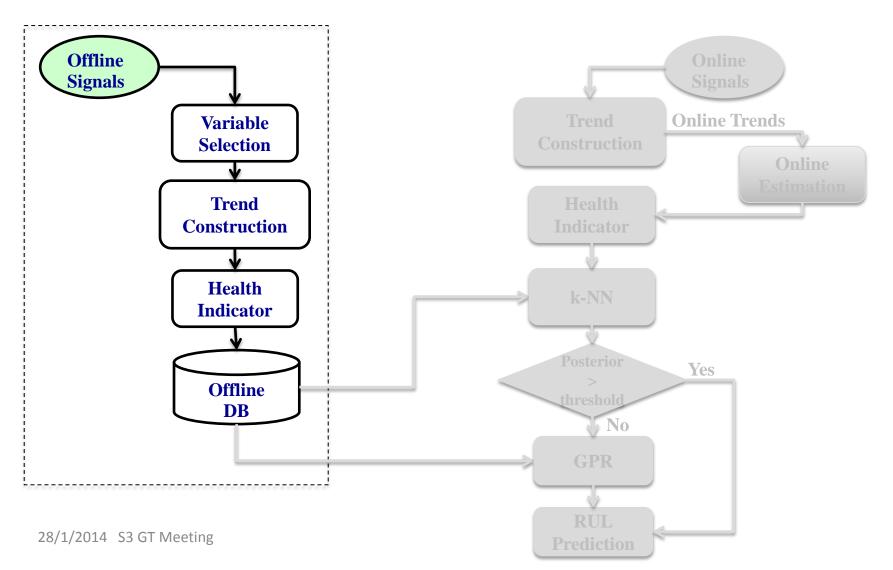
Overall scheme





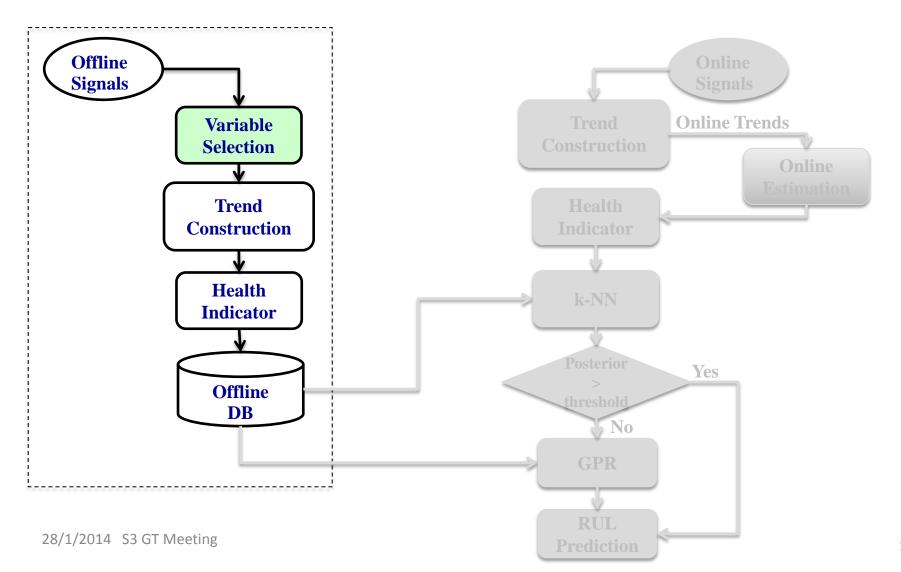






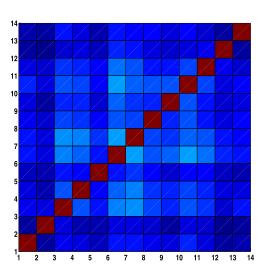
Input data

- Multidimensional time series sensory data.
- Can be represented as a matrix D_{NxM}
 - Where, N is number of observations and M is number of sensors, i.e. variables.
- Signals that have non random relationships contain information about system degradation.
- The challenge is to automatically select the interesting variables.



1. Symmetrical uncertainty measure:

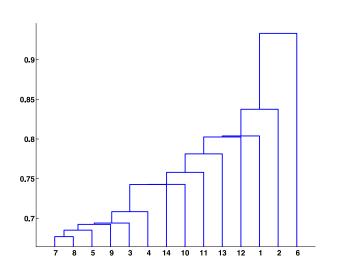
$$SU(X,Y) = 2 \times \frac{I(X,Y)}{H(X) + H(Y)}$$



1. Symmetrical uncertainty measure:

$$SU(X,Y) = 2 \times \frac{I(X,Y)}{H(X) + H(Y)}$$

2. Hierarchical clustering and cut off distance was selected automatically.

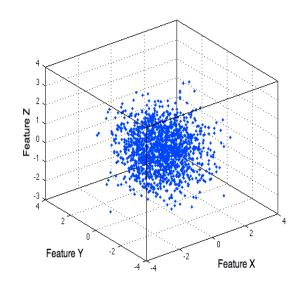


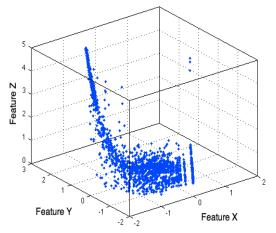
Variable selection

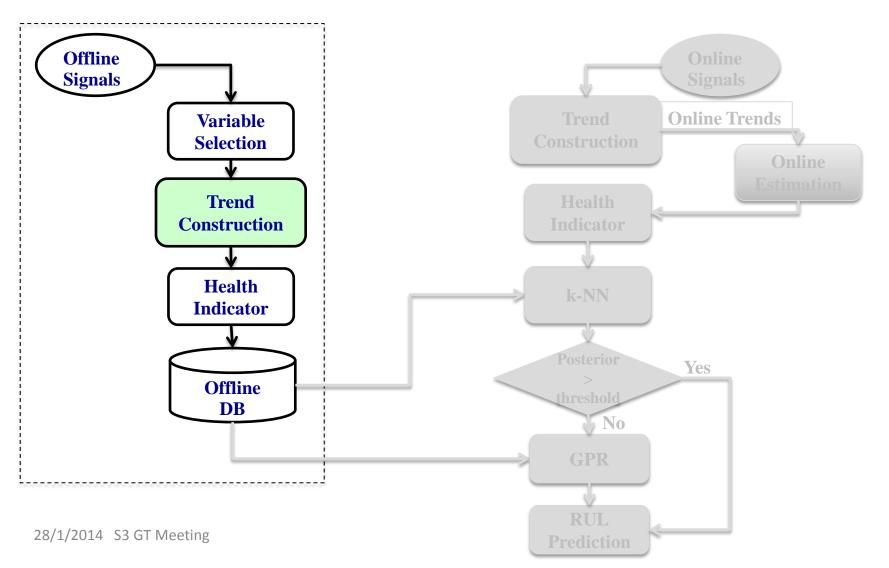
1. Symmetrical uncertainty measure:

$$SU(X,Y) = 2 \times \frac{I(X,Y)}{H(X) + H(Y)}$$

- Hierarchical clustering and cut off distance is selected automatically.
- 3. Clustering quality using normalized value of distortion measure of the neurons.





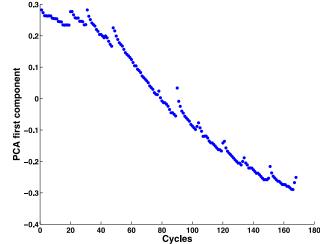


Trend construction

Using principle component analysis

$$C\lambda_i = \lambda_i v_i$$

Where λ_i is eigenvalue and v_i is eigenvectors for covariance matrix of C of the selected features.



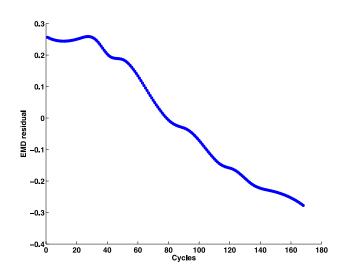
Linear projection

Trend construction

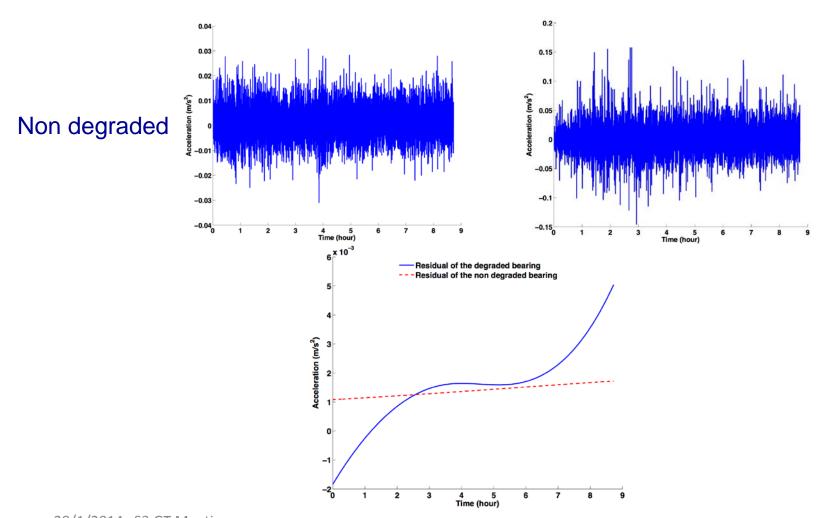
Using empirical mode decomposition

$$r_n(t) = X(t) - \sum_{i=1}^n im f_i(t)$$

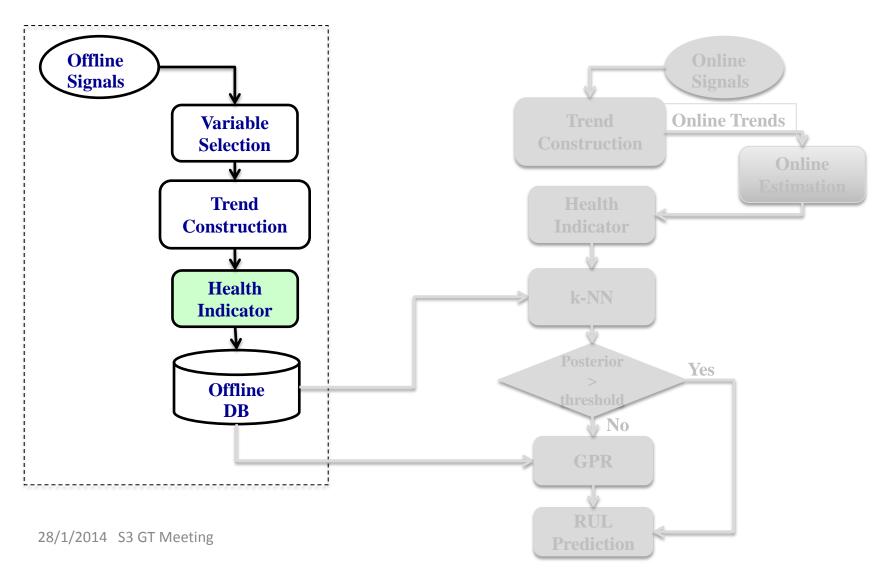
- Where X(t) is input signal, imf is intrinsic mode function and r(t) is residual.
- The residual should be constant or monotonic function.



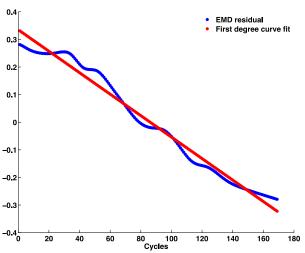
Trend construction



Degraded

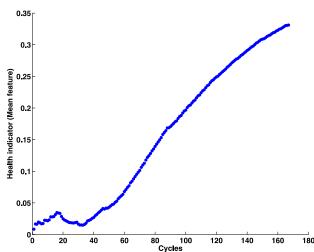


- 4 features are extracted
 - Two coefficients of a linear regression curve fit of the signal until time "t".
 - Mean of the signal until time "t".
 - Variance of the signal until time "t".



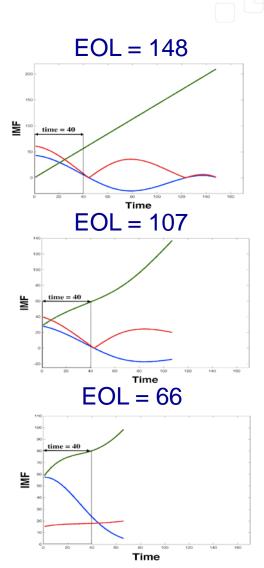
Health indicator

- 4 features are extracted
 - Two coefficients of a linear regression curve fit of the signal until time "t".
 - Mean of the signal until time "t".
 - Variance of the signal until time "t".
- The result is a health indicator.



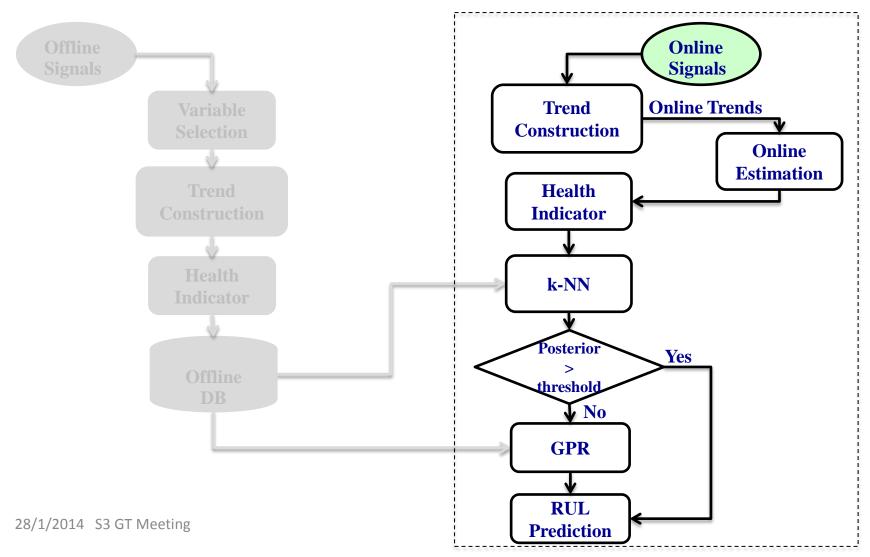
Health indicator

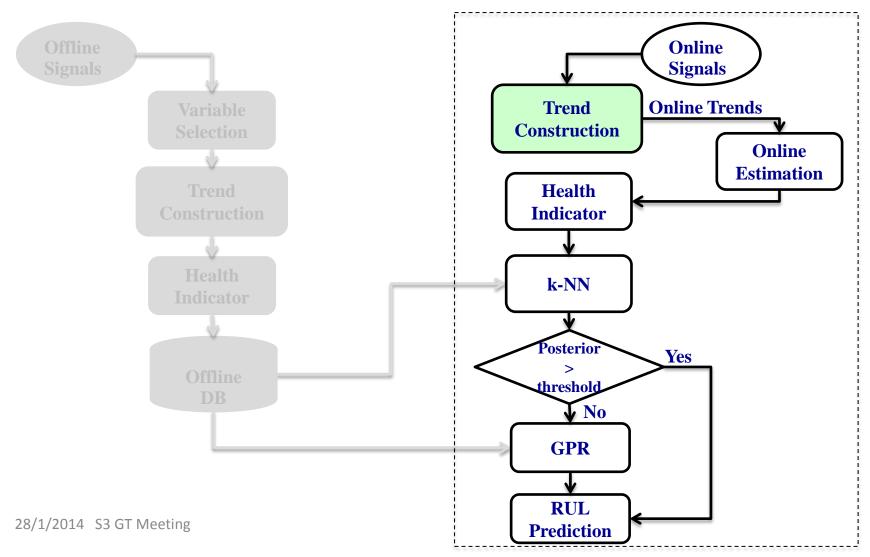
- 4 features are extracted
 - Two coefficients of a linear regression curve fit of the signal until time "t".
 - Mean of the signal until time "t".
 - Variance of the signal until time "t".
- The result is a health indicator.
- The features are labeled according to the EOL of each trend.



28/1/2014 S3 GT Meeting

28







State estimation: Bayes filter

- Critical components are dynamic systems that possess internal state which can characterize the system health.
- Internal state can not be measured directly.
- Sensory data are used to deduce the internal state.
- The evolution of the state and measurements are governed by probabilistic laws.

- Markovian internal state will be denoted as x_t and the sensory data are denoted as z_t at time t.
- Two main quantities need to be observed:
 - State transition probability: $p(x_t | x_{t-1})$
 - Measurement transition probability: $p(z_t | x_t)$
- Probability over state variable x_t will be denoted as:

$$- p_{posterior}(x_t) = p(x_t \mid z_{1:t}).$$

- Prediction probability distribution denoted as:
 - $p_{prior}(x_t) = p(x_t | z_{1:t-1})$

State estimation: Bayes filter

 Bayes filter: a general algorithm for calculating the prior and posterior probabilities.

Input:
$$p_0(x_{t-1}), z_t$$

Output: $p_{posterior}(x_t)$
 $\forall x_t$

$$p_{prior}(x_t) = \int p(x_t \mid x_{t-1}) p(x_{t-1}) dx$$

$$p_{posterior}(x_t) = \eta p(z_t \mid x_t) p_{prior}(x_t)$$
end

Estimates the probability distribution recursively from the data.

State estimation: Bayes filter

- Can be implemented in different ways such as:
 - Kalman filter.
 - Extended Kalman filter.
 - Particle filter.
 - Histogram filter.
- Any implementation requires knowing three probability distributions:
 - 1. Initial probability.
 - 2. Measurement transition probability.
 - 3. State transition probability.

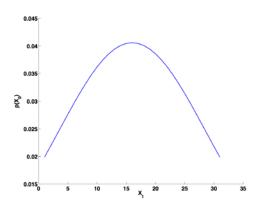
State estimation: Bayes filter

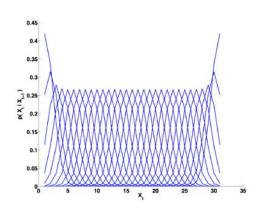
Known as histogram filter for continuous states.

Input:
$$\{p_{k,t-1}\}, z_t$$

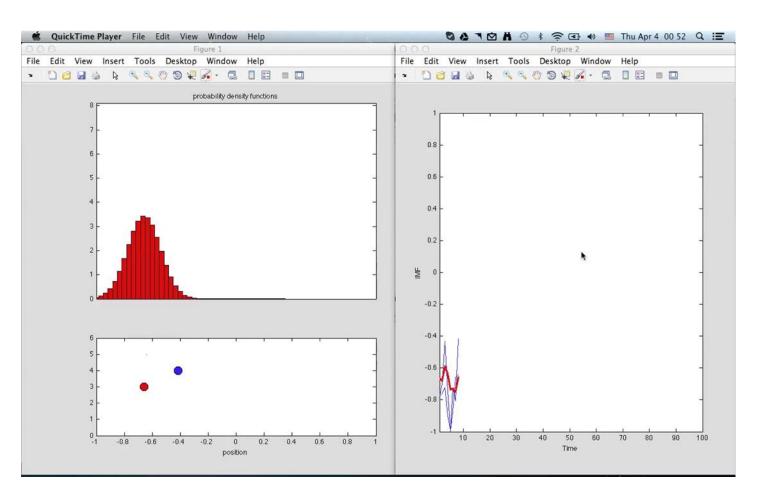
Output: $\{p_{k,t}\}$
 $\forall x_t$
 $\bar{p}_{k,t} = \sum_{i} p(X_t = x_k \mid X_{t-1} = x_i) p_{i,t-1}$
 $p_{k,t} = \eta p(z_t \mid X_t = x_k) \bar{p}_{k,t}$
end

 Decomposes the state space into many regions and represents the posterior by a histogram.





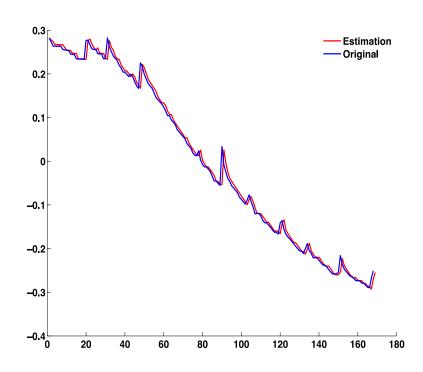
State estimation: Bayes filter

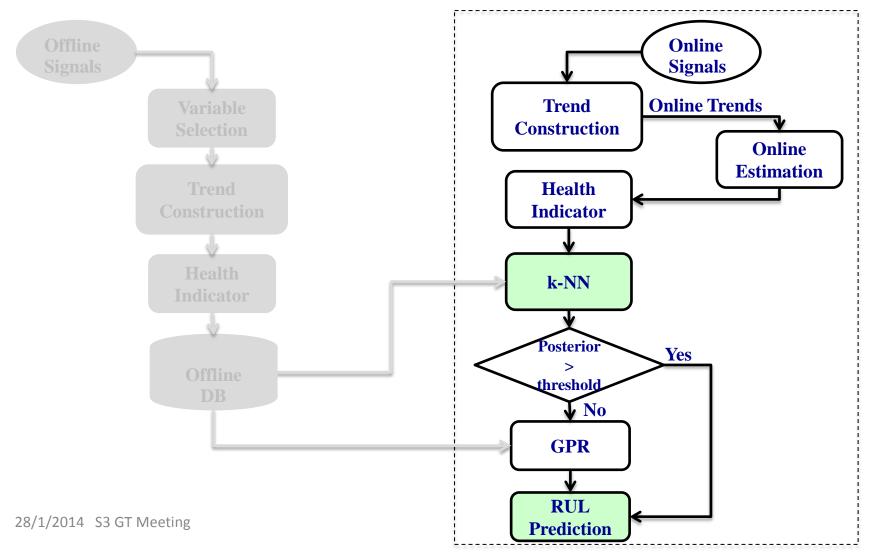


State estimation: Bayes filter

 Example of estimating the trend of the projected capacity and voltage variables at discharge.

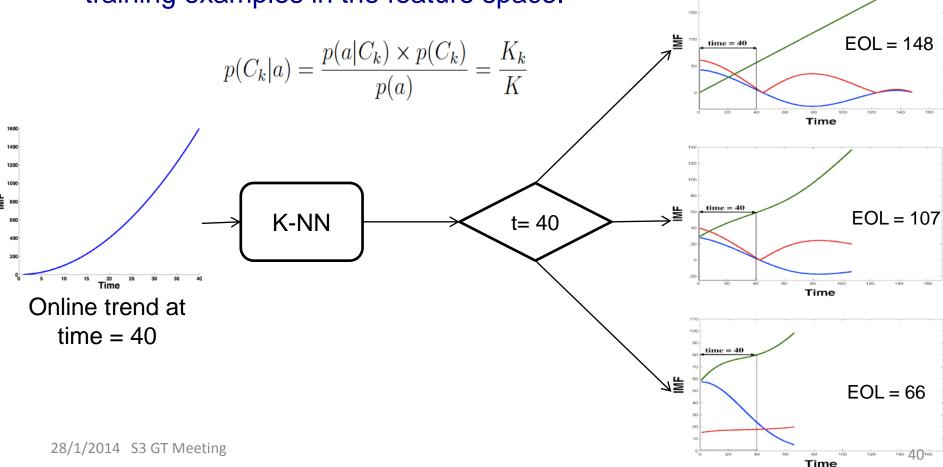
• RMS = 0.0148





Online selection (k-NN)

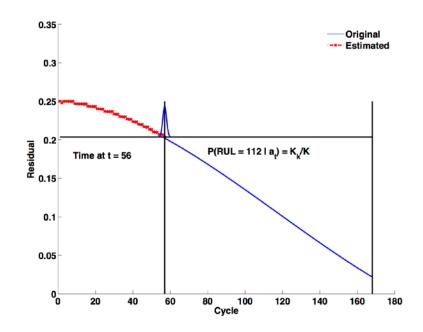
 A k-NN classifier for objects based on closest training examples in the feature space.



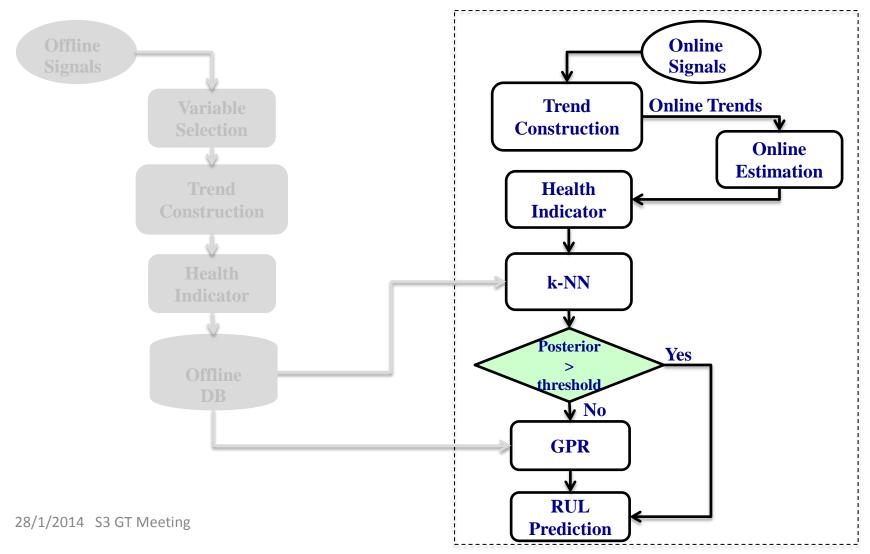
Offline trends

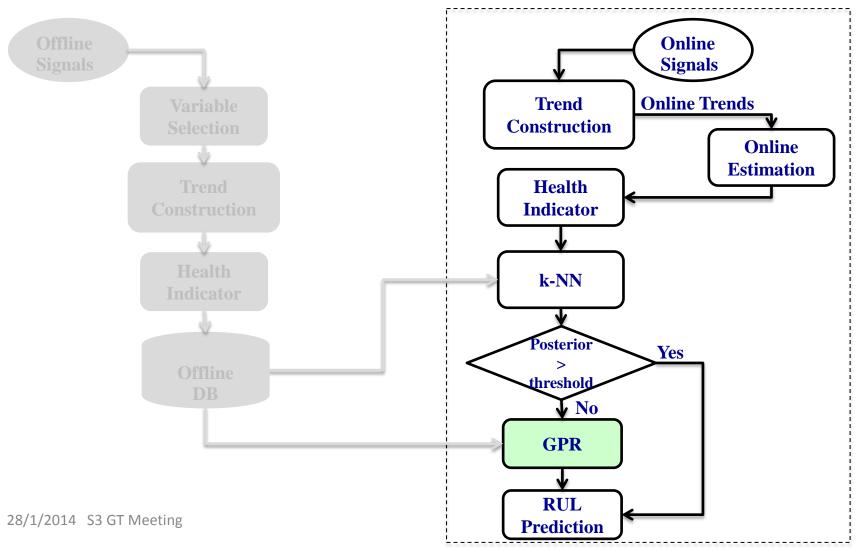
RUL prediction

- Using Euclidean distance.
 - Between online signal and database till time "t".
 - Efficient for this particular problem.



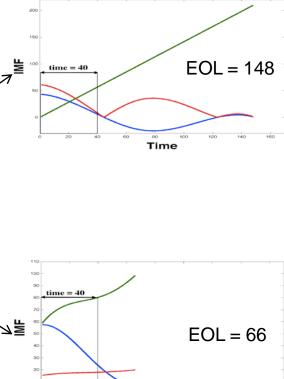
$$d(q-p) = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2 + \dots + (q_n-p_n)^2} = \sqrt{\sum_{i=1}^n (q_i-p_i)^2}$$





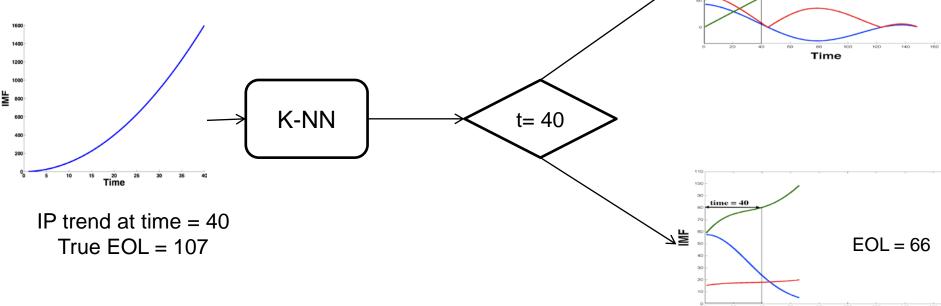
Gaussian process regression (GPR)

The classification error tends to be very high when new data, which the algorithm did not see before, emerge.



Time

Offline trends



Gaussian process regression (GPR)

 To map from online samples x to the most similar group of offline trends y GPR is proposed.

 GPR defines the prior for output f(x) in form of distribution over functions specified by Gaussian process (GP) and Gaussian noise:

$$y = f(x) + N(0, \sigma_n^2)$$

 GP function f(x) is specified by a mean function m(x) and covariance function k(x,x') collected for all possible pairs of the input vector x.

Gaussian process (GP)

The posterior probability distribution can be written as:

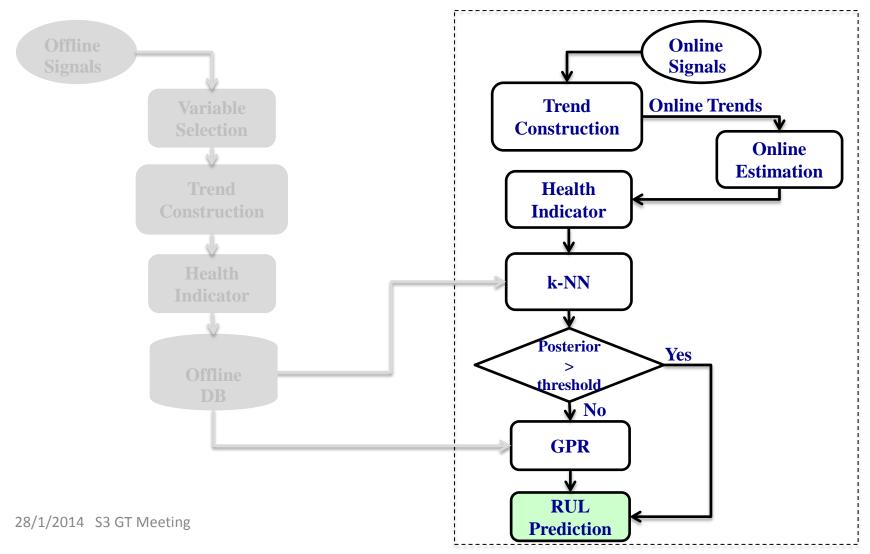
$$\begin{bmatrix} \mathbf{y} \\ \mathbf{y}^* \end{bmatrix} \sim \mathbf{N} \begin{bmatrix} \boldsymbol{\mu} \\ \boldsymbol{\mu}^* \end{bmatrix} \begin{bmatrix} \mathbf{K} & \mathbf{K}^{*T} \\ \mathbf{K}^* & \mathbf{K}^* \end{bmatrix}$$

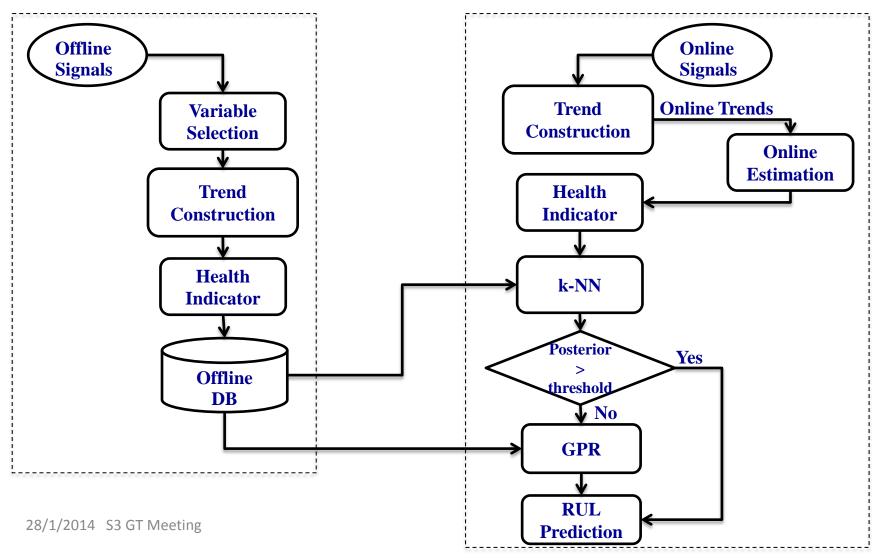
 The best estimate for y*, i.e. RUL, is the mean of this distribution

$$\overline{\mathbf{y}^*} = \mu^* + \kappa^* \kappa^{-1} (\mathbf{y} - \mu)$$

The uncertainty in the estimate is represented in the variance.

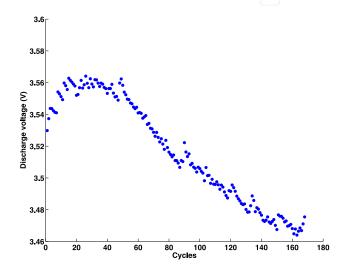
$$var(y^*) = K^{**} - K^* K^{-1} K^{*T}$$

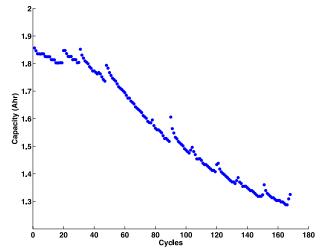




NASA batteries

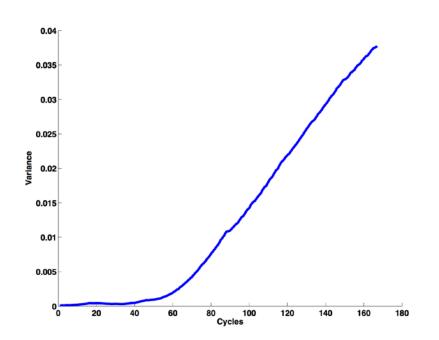
- 34 datasets are used
- 11 signals are used in the experiment
 - 5 charging.
 - 6 discharging.
- Two interesting relations are selected
 - Discharging voltage
 - Capacity

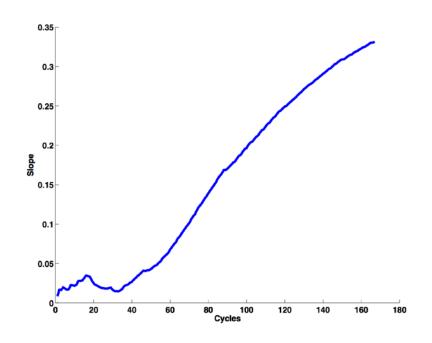




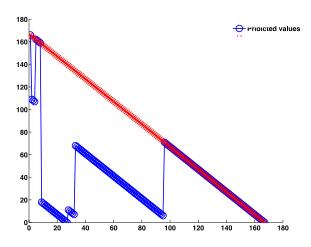
NASA batteries

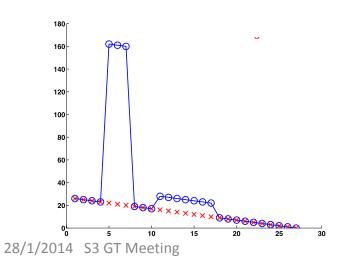
- Two health indicators correlated with the capacity
 - Variance
 - Slope

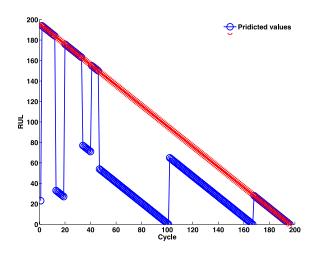


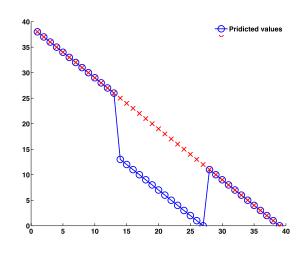


NASA batteries









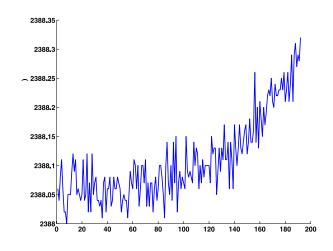
NASA batteries

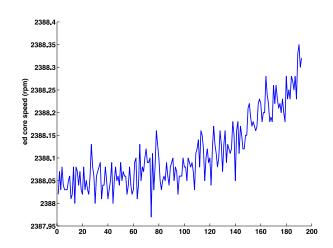
- Three fold cross validation.
- Percentage error calculated.
- Three data sets were unique.

	Fold #1	Fold #2	Fold #3	Total error (Avg.)
Without unique data	27.11%	23.73%	18.01	22.94%
With unique data	38.75%	37.11%	36.89%	37.58%

NASA Turbofan engine data

- 2 datasets are used
 - 100 engine data for training
 - 100 engine data for testing
- 21 signals are used in the experiment
 - Total temperature at fan inlet
 - Pressure at fan inlet
 - Demanded fan speed
- Two interesting relations are selected
 - Physical core speed
 - Corrected core speed

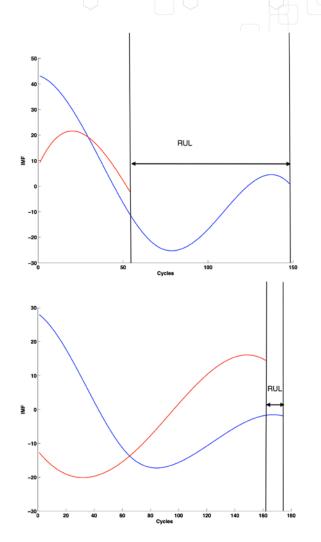




NASA turbofans

- All training data used for training and testing for test.
- Percentage error calculated.
- Only one prediction at the prespecified critical time.

k-NN	GPR	Integrated
12.74%	11.48%	11.41%



Conclusion & future work

- A data-driven prognostic method for condition assessment and RUL prediction is proposed.
- The method can be identified as direct RUL Bayesian learning approach.
- The uncertainty about the measurements and the predictions represented by conditional probability.
- Two health indicators shown to be correlated with degradation mechanism.

Conclusion & future work

- Apply the method on data sets with variable operating conditions.
- Test the method after introducing maintenance interventions.
- Test the proposed method on new application.
- Explore other classification/regression models.

References

- [1] ISO 13381-1. Condition monitoring and diagnostics of machines- Prognostics- Part1: General guidelines, 2004.
- [2] D.A. Tobon-Mejia, K. Medjaher, and N. Zerhouni. CNC machine tool's wear diagnostics and prognostics by using dynamic bayesian networks. Mech. Syst. and Signal Proc., 28: 167-182, 2012.
- [3] Enrico Zio and Francesco Di Maio. A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system. Rel. Eng. and Safety Syst., 95: 49-57, 2010.
- [4] Andrew K.S. Jardine, Daming Lin, and Dragan Banjevic. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20: 1483-1510, 2006
- [5] B. Saha and K. Goebel (2007). "Battery Data Set", NASA Ames Prognostics Data Repositoryhttp://ti.arc.nasa.gov/project/prognostic-data-repository], NASA Ames, Moffett Field, CA
- [6] A. Saxena and K. Goebel (2008). "C-MAPSS Data Set", NASA Ames Prognostics Data Repository, http://ti.arc.nasa.gov/project/prognostic-data-repository], NASA Ames, Moffett Field, CA.

Questions?