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Context and motivations 

  Context 

– DFSER Project 

– Skills 

• L2EP 

• MAIA EOLIS 

• URIA 
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Research objectives and Contributions 
  

  
 Research objectives 

– Maintenance and operation costs reduction 

– Increase the availability of wind turbine          

 Contributions 

– The contributon of the project aims at achieving a drift-like fault diagnosis of 

wind turbine 

Early Detection of Drift-like fault  

Oui Non 

$ 40 K $ 250 K 
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Wind Turbine Description 
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•  Control strategies are applied to 

optimize the energy production : 

       - Converter torque  

       - The blades angle  

•  The focus of converter control of WT is 

in zone 2 and 3 

• Doubly Fed Induction Generator  

structure consists of two converters : 

       - Grid power side converter  

       - Rotor side converter  

•  Controller operates in four zones in 

order to optimize the energy production 

according to the wind speed  
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Challenges 

objectives Converter  drifts detection and isolation  

High variability of  

The différent operating modes correlated to the wind speed 

w

Reg 3 

Reg 2 

High variability of  ,g r

The different operating modes 

Power Converters 
Ac 

Dc 

,g m

.g r

Controller 

rp
g gp



,g r

sensor : isolation problem   

Unknown aerodynamique torque related to the wind speed 
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Major Advantages  

Powerfull tool of handling non-linear and multi-variable problems  

Ability to learn on-line  

Very simple to implement  

Ability to learn without to a priori physical knowledge of the system  

Diagnosis methods 

Internal methods 

Parameter  

estimation 

State  

estimation 

Signal  

analysis 

External methods 

Expert systems 
Machine learning  

and data mining 
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Changes and  detected

confirmed

Measurements

Preprocessing  and data 

analysis 
Calculation of a pattern x

Classifier learning
Computing the parameters

of the evolving class

Monitoring

Historical data base for

initial offline learning

On-line data 
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Pattern x
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Controller
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current
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 A generic on-line and adaptative machine  

learning and data mining scheme  

 

- Use of any learning method  

 

 A  hybrid dynamic classifier for signale and  

multiple drift-like faults diagnosis in power  

Converter  

 

- Maximize the discriminition  between operating  

conditions in the feature space  

 

 This scheme consider only data  samples  

about normal operating conditions  

 Diagnosis robustness 

  Drift-like fault isolation  

Proposed approach 
Hybrid dynamic data-mining scheme  
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Fault N° Drift speed Converter  Fault Type 
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Dynamical Feature spaces  

Different discrete modes of a three-cell converter. 
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 We suppose that only data corresponding to normal operating  

conditions (normal class) are avalible in advance   

 Unsupervised drift indicators  based on Ecludean distance  

   are used  
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Obtained results 

Fault N° Type Drift 
speed 

F1h Simple fault in  5s 0.74s No 
detection 

1.65s 

F2m Simple fault in  10s 1.78s No 
detection 

3.34s 

F3s Simple fault in  15s 2.71s No 
detection 

5.09s 

F4h Simple fault in  5s No 
detection 

0.79s 1.71s 

F5m Simple fault in  10s No 
detection 

1.81s 3.42s 

F6s Simple fault in  15s No 
detection 

2.77s 5.17s 

F7h Multiple fault 
in 

5s 0.75s 0.78s 1.09s 

F8m Multiple fault 
in 

10s 1.79s 1.77s 2.87s 

F9s Multiple fault 
in  

15s 2.69s 2.65s 4.10s 

1I 2I 3I

1 2 and C C

1C

2C

1C

2C

1C

2C

1 2 and C C

1 2 and C C
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• Dynamical feature space is realized to detect a drift in the normal operating conditions of the   
multicellular converter in each discrete mode 

Perspective  

 

•  Hybrid classifier able to detect a drift in the normal operating conditions of wind turbine            
power converter  

•  Automated on-line early fault diagnosis of wind turbine power converter 

• Enrichement of the proposed scheme by the integration of the prognosis module 

•  Enrichement of the proposed scheme by the integration of the Fault-Tolerant Control module 

 

• Drift indicator for each attributes of feature space for fault detection and isolation  

Work done 

• Enrichement of the proposed scheme by the integration of  Condition Based 
Maintenance   
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Measurements

Preprocessing  and data 
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