

Hybrid dynamic classifier for single and multiple drift-like fault diagnosis in a class of hybrid dynamic systems: application to wind turbine converters

Houari TOUBAKH

Supervisor: Pr Moamar SAYED-MOUCHAWEH

(URIA) Unité de Recherche en Informatique et Automatique École des Mines de Douai Université Lille 1 Sciences et Technologies Automatique, Génie Informatique, Traitement du Signal et des Images

Outline

Introduction

MINES

Douai

- ✓ Context and motivations
- \checkmark Research objectives and contributions
- \checkmark Wind turbine description

Challenges related to wind turbine converter fault diagnosis

Proposed approach

- ✓ Fault scenarios
- \checkmark Processing and data analysis
- ✓ Classifier learning and updating
- \checkmark Drift monitoring and interpretation
- Experimentation and obtained results
 - ✓ Simple drift-like fault in capacitor C_1
 - ✓ Simple drift-like fault in capacitor C_2
 - ✓ Multiple drift-like fault in C_1 and C_2

Conclusion and future directions

Introduction

Motivation Proposed approach Experimentation and obtained results Conclusion and future directions **Context and motivations** Research objectives and contributions Wind turbine description

Context and motivations

✓ Context

MINES

- DFSER Project
- Skills
 - L2EP
 - MAIA EOLIS
 - URIA

Context and motivations **Research objectives and contributions** Wind turbine description

Research objectives and Contributions

- ✓ Research objectives
 - Maintenance and operation costs reduction
 - Increase the availability of wind turbine
- ✓ Contributions

MINES

Douai

- The contributon of the project aims at achieving a drift-like fault diagnosis of wind turbine

Introduction

Motivation Proposed approach Experimentation and obtained results Conclusion and future directions Context and motivations Research objectives and contributions **Wind turbine description**

Wind Turbine Description

- Doubly Fed Induction Generator structure consists of two converters :
 - Grid power side converter
 - Rotor side converter

MINES

- Controller operates in four zones in order to optimize the energy production according to the wind speed
- Control strategies are applied to optimize the energy production :
 - Converter torque
 - The blades angle
- The focus of converter control of WT is in zone 2 and 3

Introduction

MINES

Douai

Motivation Proposed approach Experimentation and obtained results Conclusion and future directions Context and motivations Research objectives and contributions **Wind turbine description**

Power converter within wind turbine

Turbine • The rotor side converter consists of three identical three cell converters used in DC-AC DFIG . . . EEE r MCCS Drive train DC • The multicellular converters are used to 'AC control the currents of the DFIG rotor v_{s2} • The multicellular converters consist of serial cells, each \overleftarrow{I}_{S^3} ñ cell contains two switches with complementarty value V_{s3} Three phase Grid S_p $V_{C_j,ref} = j.\frac{E}{p}, \quad j = 1,..., p-1$ _ V_{C p-1} V_{C j} Vs (V) hт IШ 43 300 43 600 43 700 38500 43 500 43 800 43 900 44 000 Time (s)

October 5, 2015

Houari TOUBAKH

8

Fault scenarios Processing and data analysis Classifier learning and updating Drift monitoring

Fault scenarios

Fault N°	Drift speed	Converter Fault	Туре
F1h	5s (High)	$\text{ESR}_1 \rightarrow \text{ESR}_{1F}$	Simple fault in C_1
F2m	10s (Medium)	$\text{ESR}_1 \rightarrow \text{ESR}_{1F}$	Simple fault in $_{C_1}$
F3s	15s (Slow)	$\text{ESR}_1 \rightarrow \text{ESR}_{1F}$	Simple fault in $_{C_1}$
F4h	5s (High)	$\text{ESR}_2 \rightarrow \text{ESR}_{2\text{F}}$	Simple fault in C_2
F5m	10s (Medium)	$\text{ESR}_2 \rightarrow \text{ESR}_{2F}$	Simple fault in C ₂
F6s	15s (Slow)	$\text{ESR}_2 \rightarrow \text{ESR}_{2\text{F}}$	Simple fault in C_2
F7h	5s (High)	$\text{ESR}_{a} \rightarrow \text{ESR}_{ar}$ and $\text{ESR}_{a} \rightarrow \text{ESR}_{ar}$	Multiple fault in C ₁
		$_{2F} + _{2F}$	and C_2
F8m	10s (Medium)	$FSP \rightarrow FSP$ and $FSP \rightarrow FSP$	Multiple fault in C ₁
		$LSR_2 \rightarrow LSR_{2F}$ and $LSR_2 \rightarrow LSR_{2F}$	and C_2
F9s	15s (Slow)	$\text{ESR}_2 \rightarrow \text{ESR}_{2E}$ and $\text{ESR}_2 \rightarrow \text{ESR}_{2E}$	Multiple fault in _{C1}
		2 24 2 24	and C ₂

Simplified diagram of the equivalent serial resistance (ESR)

Generated converter fault scenarios

MINES

Douai

Fault scenarios Processing and data analysis Classifier learning and updating Drift monitoring

Converter drift-like fault scenarios related to capacitor C₁

MINES

Fault scenarios Processing and data analysis Classifier learning and updating Drift monitoring

Simple drift-like fault scenarios related to capacitor C₂

MINES

Douai

Fault scenarios Processing and data analysis Classifier learning and updating Drift monitoring

Multiple drift-like fault scenarios related to capacitor C_1 and C_2

October 5, 2015

MINES

Douai

Fault scenarios **Processing and data analysis** Classifier learning and updating Drift monitoring

Dynamical Feature spaces

✓ The features are represented by residuals R_{r,q_n} (r = 1, 2, 3)

Feature 1

MINES

Douai

$$\mathbf{R}_{1,\mathbf{q}_{i}} = \mathbf{V}_{\mathbf{C}_{1},\mathbf{m}} - \left(\mathbf{V}_{\mathbf{C}_{1},\mathrm{ref}} = \frac{\mathbf{E}}{3}\right)$$

Feature 2

$$R_{2,q_i} = V_{C_2,m} - \left(V_{C_2,ref} = \frac{2E}{3}\right)$$

Feature 3

$$\mathbf{R}_{3,\mathbf{q}_{i}} = \mathbf{V}_{S,m} - \mathbf{V}_{S,ref}$$

Dynamical Feature spaces

$\begin{array}{c} Feature \ R_n \\ Feature space in \ q_i \end{array}$	R ₁	R ₂	R ₃
Feature space in q_2	+	-	+
Feature space in q_3	+	+	+
Feature space in q_4	-	+	+
Feature space in q_5	-	+	+
Feature space in q_6	+	+	+
Feature space in q_7	+	-	+

Feature space Matrix

 \checkmark Physical knowledge is used in order to construct the feature space

Fault scenarios **Processing and data analysis** Classifier learning and updating Drift monitoring

Dynamical Feature spaces

Different discrete modes of a three-cell converter.

MINES

Douai

Fault scenarios **Processing and data analysis** Classifier learning and updating Drift monitoring

Dynamical Feature spaces

q _i R _i	R ₁	R ₂	R ₃
q_2	F _{C1}	-	F _{C1}
q ₃	F _{C1}	F _{C2}	$F_{C1}, F_{C2}, F_{C1}F_{C2}$
q ₄	-	F _{C2}	F _{C2}
q ₅	-	F _{C2}	F_{C2}
q ₆	F _{C1}	F _{C2}	$F_{C1}, F_{C2}, F_{C1}F_{C2}$
q ₇	F _{C1}	-	F _{C1}

SENSITIVITY OF RESIDUALS R_1 , R_2 and R_3 to the parametric faults in C_1 (indicated by the fault label Fc1) and in C_2 (indicated by the fault label Fc2) in each discrete mode of the MCC.

MINES

Fault scenarios Processing and data analysis **Classifier learning and updating** Drift monitoring

Classifier learning and updating

Auto-adaptive Dynamical Clustering Algorithm

A hybrid dynamic classifier that able to change its decision function as well as its feature space according to the discrete mode

Updating step $\rightarrow \mu_{pj}(t) = \mu_{pj}(t-1) + f(\mu_{pj}(t-1), x^{\text{new}}, x^{\text{old}}, N_{\text{win}})$

Updating according to active discrete mode

MINES

Douai

Fault scenarios Processing and data analysis Classifier learning and updating **Drift monitoring**

Drift Monitoring

 \checkmark We suppose that only data corresponding to normal operating conditions (normal class) are avalible in advance

✓ Unsupervised drift indicators based on Ecludean distance are used

$$Drift Monitoring = \begin{bmatrix} I_{q_{i}}^{1} \left(x_{new}^{1}\right) = d_{E}\left(\mu_{N}^{1}, \mu_{e}^{1}\right) & d_{E}\left(\mu_{N}^{j}, \mu_{e}^{j}\right) = \left|\mu_{N}^{j} - \mu_{e}^{j}(x_{new}^{j})\right| \\ I_{q_{i}}^{2} \left(x_{new}^{2}\right) = d_{E}\left(\mu_{N}^{2}, \mu_{e}^{2}\right) & I_{q_{i}}^{3} \left(x_{new}^{3}\right) = d_{E}\left(\mu_{N}^{3}, \mu_{e}^{3}\right) & I_{q_{i}}^{j} \left(x^{New}\right) = d_{E}\left(\mu_{N}^{1}, \mu_{e}^{1}\right) & , j = 1, ..., d; i = 1, ..., n \end{bmatrix}$$

MINES

Douai

Simple drift-like fault scenarios related to capacitor C₁

October 5, 2015

MINES

Douai

Simple drift-like fault scenarios related to capacitor C₂

Douai

Multiple drift-like fault scenarios related to capacitor C_1 and C_2

Obtained results

Fault N°	Туре	Drift	I^1	I^2	I ³
		speed			
F1h	Simple fault in	5s	0.74s	No	1.65s
	C ₁			detection	
F2m	Simple fault in	10s	1.78s	No	3.34s
	C ₁			detection	
F3s	Simple fault in	15s	2.71s	No	5.09s
	C ₁			detection	
F4h	Simple fault in	5s	No	0.79s	1.71s
	C ₂		detection		
F5m	Simple fault in	10s	No	1.81s	3.42s
	C ₂		detection		
F6s	Simple fault in	15s	No	2.77s	5.17s
	C_2		detection		
F7h	Multiple fault	5s	0.75s	0.78s	1.09s
	in C_1 and C_2				
F8m	Multiple fault	10s	1.79s	1.77s	2.87s
	in C_1 and C_2				
F9s	Multiple fault	15s	2.69s	2.65s	4.10s
	in C_1 and C_2				

MINES

Conclusion and future directions

Work done

- Automated on-line early fault diagnosis of wind turbine power converter
- Hybrid classifier able to detect a drift in the normal operating conditions of wind turbine power converter
- Dynamical feature space is realized to detect a drift in the normal operating conditions of the multicellular converter in each discrete mode
- Drift indicator for each attributes of feature space for fault detection and isolation Perspective
- Enrichement of the proposed scheme by the integration of the prognosis module
- Enrichement of the proposed scheme by the integration of the Fault-Tolerant Control module
- Enrichement of the proposed scheme by the integration of Condition Based Maintenance

MINES

Douai

Publications

Journal papers:

MINES

Douai

- **H. Toubakh**, M. Sayed-Mouchaweh, "Hybrid dynamic classifier for drift-like fault diagnosis in a class of hybrid dynamic systems: Application to wind turbine converter". Neurocomputing. Accepted, Elsevier, DOI: 10.1016/j.neucom.2015.07.073. 2015.
- H. Toubakh, M. Sayed-Mouchaweh, "Hybrid dynamic data-driven approach for drift-like fault detection in wind turbines," Evolving Systems, Springer. (Vol. 6, pp:115-129). 2014.

Conference papers:

- **H.Toubakh**, M.Sayed-Mouchaweh, A.Fleury and J.Boonaert. "Hybrid Dynamic data mining scheme for Drift-like Fault Diagnosis in multicellular converters.", In Third International Conference on Technological Advances in Electrical, Electronics and computer Engineering (TAEECE), Beyrouth, Lebanon, IEEE, (pp. 56-61), 2015.
- H.Toubakh, M.Sayed-Mouchaweh. "Advanced data mining approach for wind turbines fault prediction.", In Proceedings of second European conference of the prognostics and health management society, Nantes, France, (Vol. 5: pp. 288-296), 2014.
- •B.Abichou, D.Florez, M.Sayed-Mouchaweh, **H.Toubakh**, B.François, N.Girard. "Fault Diagnosis Methods for Wind Turbines Health Monitoring: a Review.", In Proceedings of second European conference of the prognostics and health management society, Nantes, France, (Vol. 5: pp. 297-304), 2014.
- **H.Toubakh**, M.Sayed-Mouchaweh and E.Duviella. "Advanced pattern recognition approach for fault diagnosis of wind turbine," In Machine Learning and Applications (ICMLA), 12th International Conference, Miami, USA, IEEE, (Vol.2, pp. 368-373), 2013.

Thank you