

Online Monitoring of Supercapacitor Ageing

Authors:

Zhihao SHI, François AUGER, Emmanuel SCHAEFFER, Philippe GUILLEMET, Luc LORON

Réunion inter GDR inter GT – 21/11/2013

Content

Introduction

- □ Applications of EDLCs (Electric Double Layer Capacitors)
- Advantages of EDLCs
- EDLCs models
- EDLCs Ageing

Online Identification

- Principle
- □ Mathematical model of EDLCs system
- Observability of EDLCs system
- Identification methods
- Experimental Results
- Conclusion and future work

Applications

Electronics

- PCMobile Phone
- Digital Camera

Energy

- Solar Cell
- Wind Power
- Fuel Cell

Transportation

- Electric Vehicle (EV)
- Supercapacitor Bus

Global market for supercapacitors for 2008-2015

EDLCs (Electric double layer capacitors)

	Conventional Capacitor	Ultra-capacitor	Lead acid battery		
Charge time	10 ⁻³ - 10 ⁻⁶ s	0 - 30 s	1 – 5 h		
Discharge time	10 ⁻³ - 10 ⁻⁶ s	0.3 — 30 s	0.3 – 3 h		
Energy density (Wh/kg)	0.1	1 - 10	10 - 100		
Power density (W/kg)	100000	10000	1000		
Cycle life	>500000	>500000	1000		
Charge/discharge efficiency	>0.95	0.85-0.98	0.7-0.85		
			31 2		

- High C

 -> Higher energy density
 than a conventional capacitor
- High Power Density

 -> Faster charging/discharging
 than a battery
- Long life cycle

Initial and aged Activated-carbon surfaces

AFM photographs of the positive polarizing electrode by *T. Umemura* etc.

RESEARCH AIM:

Monitor the ageing process of the EDLCs

- \rightarrow Detect when the end of life criteria occurs
- \rightarrow Replace the old EDLC to avoid catastrophic events

EDLCs models

[1] D. R. Cahela and B. J. Tatarchuk, "Overview of electrochemical double layer capacitors", Proceedings of the IECON'97 23rd International Conference on Industrial Electronics, Control and Instrumentation, Vol. 3, pp. 1068-1073, November 1997

[2] R. de Levie, "On porous electrodes in electrolyte solutions: I. Capacitance effects," Electrochimica Acta, vol. 8, no. 10, pp. 751–780, Oct. 1963.

[3] R. M. Nelms, D. R. Cahela, and B. J. Tatarchuk, "Modeling double-layer capacitor behavior using ladder circuits," IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no. 2, pp. 430–438, Apr. 2003.

[4] R. German, P. Venet, A. Sari, O. Briat, J. M. Vinassa, "Comparison of EDLC impedance models used for ageing monitoring," in 2012 1st International Conference on REVET, pp. 224–229, 2012.

Online Identification

Particular charge to provide an accurate parameter estimation.

Online identification does not disturb the way the load consumes the energy stored in the EDLC.

Online Identification

Extended state space model of EDLCs

Online state and parameter estimation

Nonlinear Observability

- The observability of the nonlinear system *
- If Jacobian matrix J at x_0 has full rank:

Locally Observable_[1]

If EDLC system satisfies $J = \frac{\partial}{\partial x} \begin{bmatrix} (L_{f}h)(x, \mathcal{U}) \\ \vdots \\ (L_{f}^{n-1}h)(x, \mathcal{U}) \end{bmatrix} , rank(J)|_{x_{0}} = n \\ +x_{4}(x_{3} + x_{4})^{2}(\dot{u}^{2} - u\ddot{u}) + x_{1}(x_{3} + x_{4})(\dot{u}\ddot{u} - u\ddot{u}) \\ +x_{4}(x_{3} + x_{4})(u^{2}\ddot{u} - u\dot{u}^{2})) \neq 0$ locally observable

[1] R. Hermann and A. Krener, "Nonlinear controllability and observability," IEEE Transactions on Automatic Control, vol. 22, no. 5, pp. 728 – 740, Oct. 1977.

Nonlinear Observability

The observability of the linearized system

Solution:

Add PRBS (Pseudo Random Binary Signal) to the charging current

Π	Π	Π	_[1Г	10	Π
١L	ΓL	IL		UU	U		

Extended Kalman Observer (EKO)

Extended system dynamics :	$\dot{x} = f(x, u) + w$	w : Process noise
Measured output :	y = h(x, u) + v	<i>v</i> : Sensor noise

(\hat{x} : states estimated by the observer)

<u>Calculation of K:</u> $K = PH^T R^{-1}$, with $\dot{P} = FP + PF^T - PH^T R^{-1}HP + Q$

Interconnected Observers (IOs) [1]

[1] G. Besançon and H. Hammouri, "On observer design for interconnected systems," Journal of Mathematical Systems, Estimation, and Control, vol. 8, no. 3, pp. 1–25, 1998.

Interconnected Observers (IOs) - Kalman-like observer

<u>Calculation of $K_{\underline{1}}$:</u> $K_1 = S^{-1}H^T$, with $\dot{S} = -\rho S - F^T(\hat{X}_2, u)S - SF(\hat{X}_2, u) + H^T H$

Interconnected Observers (IOs) - Reduced order Luenberger observer

Convergence of IOs

Estimation error from KLO:
$$e_1 = X_1 - \hat{X}_1$$

Estimation error from ROLO: $e_2 = X_2 - \hat{X}_2$
Convergence ?

Lyapunove Function Definition

For KLO:
$$V_1 = e_1^T S e_1$$

For ROLO: $V_2 = e_2^T T^2 e_2$ For Whole Observer: $V_0 = V_1 + V_2$

If: $\dot{V}_0 \leq \delta(\rho, K_2) V_0$ and $\delta(\rho, K_2) < 0$

Estimations of IOs are convergent.

Comparison of the two kinds of observers

Extended Kalman Observer (EKO)

Interconnected Observers (IOs)

- Is able to estimate the parameters online
- It is difficult to prove its convergence.
- More tuning parameters

- Is able to estimate the parameters online
- The convergence is guaranteed
- Less tuning parameters

Experimental Results

Offline characterization by EIS [1]

^[1] EIS: Electrochemical Impedance Spectroscopy

Experimental Results - Current and Voltage record

Experimental Results - Parameters estimation before ageing

Experimental Results - Parameters estimation during ageing

Conclusions

- An online in situ monitoring method by means of real-time observers is proposed to monitor the EDLCs ageing.
- To monitor the parameter evolution online, two kinds of real time observers (EKO and IOs) are designed. Compared to EKO, IOs have a lower computational cost and a guaranteed convergence.
- Real ageing experimental data showed that both observers succeed to estimate the parameters in real time and to perceive their evolution.

Future Work

 Better EDLCs models will be used to the online observation of the ageing of EDLCs.

(This work has already been presented at the IEEE IECON 2013 conference in Vienna in Nov. 2013)

Thank you for your attention!

E-mail: zhihao.shi@univ-nantes.fr