

Une nouvelle méthode d'estimation d'état en présence d'entrées inconnues.

Application aux systèmes de navigation

Par : Vincent SIRCOULOMB

Sous la direction de : José RAGOT, Houcine CHAFOUK, Ghaleb HOBLOS

- Introduction et position du problème
- État de l'art des méthodes d'estimation en présence d'entrées inconnues
- Proposition d'une nouvelle méthode
- Application à un système de navigation hybridée inertie/GPS
- Conclusions et perspectives

Introduction : objectif

Position du problème (1)

Fonction connue

• Type de modèle considéré :

• Équation de dynamique : $\dot{x}(t) = f(x(t), t) + w(t) + G(t)u(t)$

Bruit blanc, centré, de covariance connue / Matrice connue

f(t) = H(t) x(t) + v(t) Entrées inconnues

• Objectif : Calculer à tout instant :

- Une estimée $\widehat{x}(t)$ de x(t),
- Un indicateur d'erreur d'estimation (matrice de variance-covariance) non sous-estimé (robustesse ou consistance).

• Difficultés :

- Présence d'entrées inconnues, -
- Perte de mesures => Les mesures nécessaires à la stabilisation des états de dynamique instable sont en permanence conservées

Position du problème (2)

Caractéristiques de chacune des composantes $u_i(t)$ de l'entrée inconnue :

Le 25 mai 2009

Diapositive n° 5 / 35

Estimation en présence d'entrée inconnue -> État de l'art (1)

Filtres à entrées inconnues [Hou & Patton, 1998] :

- Ne s'applique qu'aux systèmes linéaires
- Condition d'applicabilité : rang(H(t)G(t)) = rang(G(t))

Matrice d'observations

Matrice de direction de l'entrée inconnue

- Filtre de Kalman Proportionnel-Intégral [Bas et al., 1999]:
 - Ajout d'un terme intégral de l'innovation lors de l'étape de correction d'un filtre de Kalman,

• Filtre de Kalman avec observateur de perturbation [Kwon & Chung, 2003] :

 Identifier des caractéristiques du bruit d'état via un observateur couplé à un filtre de Kalman.

► Approches non valables lors de la perte de mesures

Le 25 mai 2009

Estimation en présence d'entrée inconnue -> État de l'art (2)

Approche s'accommodant de pertes de mesures :

- Estimation d'entrée généralisée [Lee & Tark, 1999] :
 - Entrées inconnues u(t) modélisables sous la forme :

 $u(t) = D(t)\Theta$ — Paramètres inconnus mais constants Matrice connue

 Paramètres ⊖ estimés via un module de moindres carrés couplé à un filtre de Kalman estimant l'état.

= Classe d'entrées inconnues restreinte

- Filtrage minimax stochastique [Yaesh & Shaked, 1992] :
 - Entrée inconnue déterminée par un adversaire fictif cherchant à maximiser l'erreur d'estimation :
 - Entrée inconnue fonction de l'erreur d'estimation,
 - Entrée inconnue *a priori* non bornée.

Pourquoi une nouvelle approche ?

- Les limites des approches existantes nous incitent à développer une nouvelle approche.
- Principe de la nouvelle approche :
 - Développement de modèles dynamiques pour les entrées inconnues,
 - Modèles correspondant à des signaux présentant une variance d'Allan plate sur des intervalles de temps donnés.

La variance d'Allan (1)

- Introduite par David W. Allan [Allan, 1966],
- Principe pour un signal $\{X(t)\}$:

Le 25 mai 2009

Diapositive n° 9 / 35

La variance d'Allan (2)

Analyse de $V(\theta)$: Signal X(t) = C(t) + L(t): Processus court-terme Processus long-terme L(t)C(t)ÌΑ A θ $d_q(t) pprox 0$ $d_q(t) \neq 0$ $V(\theta)$ est influencé par C(t)Si θ est faible : Si heta est élevée : $\begin{array}{c} d_q(t) pprox 0 \\ d_q(t) eq 0 \end{array}$ $V(\theta)$ est influencé par L(t)

La VA quantifie les différentes composantes d'un signal et donc sa stabilité

Le 25 mai 2009

Diapositive n° 10 / 35

Le 25 mai 2009

Diapositive n° 11 / 35

Concept de variance d'Allan plate

 Variance d'Allan Plate (VAP) = Variance d'Allan constante (sur un intervalle donné) :

• Interprétation :

- Signal présentant autant de composantes court-terme que moyen-terme et long-terme,
- Signal pouvant statistiquement varier aussi bien lentement que rapidement (dans des limites définies par θ_{min} et θ_{max}).

Intérêt d'une variance d'Allan plate

Intérêt d'une VAP :

- Créer un modèle d'un signal {X(t)} présentant une VAP sur [θ_{min} ; θ_{max}] :
 - implique que {*X*(*t*)} peut varier aussi lentement que rapidement (dans des limites définies par θ_{min} et θ_{max}),
 - Constitue une hypothèse pire cas concernant la stabilité de {X(t)},
 - Permet de représenter une certaine ignorance sur $\{X(t)\}$.

• Idée :

 On sait (hypothèse) que chaque composante {u_i(t)} de l'entrée inconnue présente une vitesse de variation bornée :

 $au_{i,\min} < au_i < au_{i,\max}$ Lien déterminé ultérieurement

• On va modéliser $\{u_i(t)\}$ de sorte qu'elle présente une VAP sur $[\theta_{min}; \theta_{max}]$

Conception d'un modèle de VAP (1)

- Il n'existe pas de modèle simple pour un signal de VAP.
 - Alternative proposée :
 - Construire un modèle d'entrée inconnue à partir de processus simples : des Processus Markoviens à l'ordre 1,
 - Faire en sorte que la VA soit approximativement plate.

Conception d'un modèle de VAP (2)

Processus markovien à l'ordre 1 {X(t)}:

Le 25 mai 2009

Diapositive n° 15 / 35

Conception d'un modèle de VAP (3)

 Idée : exploiter la forme en cloche de la VA d'un Processus Markovien à l'ordre 1 (PM1) :

Il est possible de construire une VAP par somme de PM1

Le 25 mai 2009

Diapositive n° 16 / 35

Conception d'un modèle de VAP (4)

• Exemple illustratif :

 4 PM1 d'écart-type 1 et d'auto-corrélation 10s, 3mn50, 1h28mn, 33h47mn (suite géométrique de raison 23) :

Le 25 mai 2009

Diapositive n° 17 / 35

Conception d'un modèle de VAP (5)

• Modèle pour chacune des composantes $u_i(t)$ de l'entrée inconnue :

Paramètre du modèle de $u_i(t)$:

 $\sum m_{ij}(t)$

Nombre de PM1,

 $u_i(t)$

 $\dot{m}_{ij}(t)$

Ecart-type des N_i PM1,

Période d'auto-corrélation du PM1 le plus faiblement auto-corrélé,

Raison de la suite géométrique régissant les périodes d'auto-corrélation, des *N_i* PM1. Vaut 23 dans le cas « optimal ».

 $-\frac{1}{a-1}m_{ij}(t) + e_{ij}(t)$ Bruit blanc, centré, d'écart-type :

Le 25 mai 2009

Réglage du modèle de VAP (1)

• Rappel des hypothèses sur $u_i(t)$:

 $r_i^{N_i-1} \approx \frac{\tau_{i,\max}}{m}$

 $\tau_{i,\min}$

- Bornée en amplitude,
- Bornée en auto-corrélation : $\tau_{i,\min} < \tau_i < \tau_{i,\max}$

• Réglage des paramètres du modèle de $u_i(t)$:

- Période d'auto-corrélation τ_i la plus faible (celle du PM1 à gauche) : $\tau_i = \tau_{i,\min}$
- Période d'auto-corrélation $\overline{\tau_i}$ la plus forte (celle du PM1 à droite) :

$$\overline{\tau_i} \approx \overline{\tau_{i,\max}}$$
 avec : $\overline{\tau_i} = \underline{\tau_i} r_i^{N_i - 1} = \tau_{i,\min} r_i^{N_i - 1}$

Raison de la suite géométrique **Nombre de PM1**

avec : - N_i entier (non nul)

- $r_i \le 23$, le plus proche possible de 23

Le 25 mai 2009

Diapositive n° 19 / 35

Réglage du modèle de VAP (2)

- Exemple de réglage de N_i et r_i :
 - Mission de durée θ_{max} = 20 heures :

$$\tau_{i,\max} = \frac{\theta_{\max}}{1,89} = 10 \text{ h} 35 \text{ mn} = 38100 \text{ s}$$

Auto-corrélation minimale $\tau_{i,min} = 10 \text{ s}$

$$\Rightarrow r_i^{N_i - 1} \approx \frac{\tau_{i, \max}}{\tau_{i, \min}} \approx \frac{38100}{10} = 3810$$

avec :

• N_i entier,

- $r_i \leq 23$, le plus proche possible de 23.
- $1^{\text{ère}}$ étape : détermination de N_i à partir de $r_i = 23$ (valeur « optimale ») :

$$N_i = 3$$
: $r_i^{N_i - 1} = 529 < 3810$, $N_i = 4$: $r_i^{N_i - 1} = 12167 > 3810$.

• $2^{\text{ème}}$ étape : réglage de r_i à partir du N_i déterminé ($N_i = 4$) :

$$r_i^{N_i-1} \approx 3810 \quad \Leftrightarrow \quad r_i \approx \sqrt[N_i-1]{3810} = 15,6$$

Le 25 mai 2009

Réglage du modèle de VAP (3)

• Suite du réglage des paramètre de $u_i(t)$:

• Écart-type σ_i de chacun des N_i PM1 : réglé au maximum de l'écart-type de $u_i(t)$

-Ce réglage fait que la VA du modèle de $u_i(t)$ forme un gabarit englobant la

Le 25 mai 2009

Diapositive n° 21 / 35

Méthode d'estimation d'état en présence d'entrées inconnues

► Application à un système de navigation hybridée inertie-GPS

Diapositive n° 22 / 35

Application : navigation hybridée inertie/GPS (1)

Principe d'une navigation hybridée inertie-GPS

Application : navigation hybridée inertie/GPS (2)

Modèle dynamique des erreurs de navigation et UMI :

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}(t)\boldsymbol{x}(t) + \boldsymbol{B}(t)\boldsymbol{u}(t) + \boldsymbol{w}(t) \overset{\mathsf{Brid}}{\mathsf{ce}}$$

Bruit blanc, gaussien, centré, de variancecovariance connue

Matrices connues à chaque instant

Vecteur d'état :

- Erreur de position (3 composantes)
- Erreur de vitesse (3 composantes)
- Erreur d'attitude (3 composantes)

Vecteur d'entrées inconnues = résidu de dérive gyroscopique (3 composantes)

Seule source d'erreurs de l'UMI

- =►Pas de modélisation :
- d'erreurs accélérométriques
- de facteur d'échelle

• Variables modélisant la dérive gyroscopique (3 x 2 = 6 composantes)

Modélisation liée à la technologie utilisée : Gyroscopes Résonnants Hémisphériques

Application : navigation hybridée inertie/GPS (3)

Propriétés de l'entrée inconnue (= résidu de dérive) :

- 3 composantes de mêmes caractéristiques,
- Chaque composante :
 - Présente un temps d'auto-corrélation minimal empiriquement évalué à 10s.
 - Présente un écart-type inférieur ou égal à 1,25 deg/h.

Exemple traité au prealable

Durée d'une mission : 20 heures (navigation d'un véhicule)

Modèle de chaque composante de l'entrée inconnue :

- Somme de 4 PM1 (=► 3 x 4 = 12 variables d'état),
- Raison de la suite géométrique : 15,6 arrondi à 15 (= ► Périodes d'autocorrélation : 10s, 2mn30s, 37mn et 9h22mn),
- Ecart-type de chaque PM1 : 1,25 deg/h.

Application : navigation hybridée inertie/GPS (4)

Mesures GPS :

- Mesure de la position du véhicule (latitude, longitude, altitude),
- Mesures de la latitude et de la longitude pouvant à tout moment être perdues,
- Mesure de l'altitude en permanence conservée :
 - Pour éviter la divergence des erreurs de vitesse zénithale et d'altitude.
 - Équivalent à la présence d'un baro-altimètre.

Application : navigation hybridée inertie/GPS (5)

• Mode opératoire des simulations :

- Expériences effectuées sur deux trajectoires d'avion :
 - La trajectoire A, de type avion de chasse et d'une durée de 2 heures,
 - La trajectoire B, moins mouvementée et d'une durée de 2h40mn.
- ⇒► Mesures UMI issues de ces trajectoires.
- Simulation de type Monte Carlo :
 - 50 tirages par simulation.
- Scenarii de pertes du GPS :
 - Trajectoire A :
 - Entre la 60^{ème} et la 100^{ème} minute,
 - Trajectoire B :
 - Entre la 60^{ème} et la 100^{ème} minute
 - Entre la 110^{ème} et la 150^{ème} minute.

Le 25 mai 2009

Application : navigation hybridée inertie/GPS (6)

 Analyse des résultats par comparaison lors des phases de perte de GPS :

• DuRMS de l'erreur entre :

/les grandeurs de navigation vraies (position, vitesse, attitude réelles)

les grandeurs de navigation calculées avec recalage,

Du RMS des écarts-types.

Ecarts-types : termes calculés à partir de la diagonale de la matrice de variance-covariance du filtre de navigation.

Application : navigation hybridée inertie/GPS (7)

Erreurs RMS d'attitude

60

60

60

Temps (min)

80

80

80

100

100

100

Le 25 mai 2009

0.

0.05

Ω

0.

0.05

0

0.

0.05

0` O

n

Π

20

20

20

40

40

40

Axe nord (rad)

Axe ouest (rad)

Axe zénith (rad)

Diapositive n° 29 / 35

Application : navigation hybridée inertie/GPS (8)

Erreurs RMS de position en unité de distance (u_n)

Résultats de simulation Axe nord sur la trajectoire B : Ω n Erreurs RMS d'attitude Axe ouest 0. Axe nord (rad) 0.05Ο Ū. Ω Temps (min) Erreurs RMS de vitesse en unité de distance par seconde (u_a/s) Π Ο. 0.4 Axe ouest (rad) Axe nord 0.05 £ n n. 0. 0.4 Axe zénith (rad) Axe ouest 0.05 0.2 C ſΠ Ο Temps (min) Temps (min)

Le 25 mai 2009

Diapositive n° 30 / 35

Application : navigation hybridée inertie/GPS (9)

Comparaison avec :

- Un filtre de Kalman contraint :
 - Contrainte sur chacune des 3 composante *u_i(t)* de l'entrée inconnue :

 $|u_i(t)| \le Borne \iff |Somme des états des 4 Processus markoviens| \le Borne Borne = 0,5 deg/h$

- Approche par projection pour contraintes inégalité linéaires.
- Une navigation inertielle pure réinitialisée aux valeurs réelles au moment des pertes du GPS.

Application : navigation hybridée inertie/GPS (10)

Résultats : erreur (RMS) de position :

- Sur la trajectoire B,
 - Juste avant le retour des mesures lors de la 2^{nde} perte de GPS (150^{ème} minute),
- =► Résultats les plus significatifs.

	Position nord	Position ouest	Position horizontale	
Solution proposée	281	215	353	- 5%
Kalman contraint	250	225	336	Y)
Navigation inertielle pure	423	270	502	+ 42%

Diapositive n° 32 / 35

Conclusion

 Proposition d'une méthode d'estimation d'état robuste vis-àvis d'entrées inconnues :

Modélisation des entrées inconnues :

- Par un cumul de processus markoviens à l'ordre 1 (modèle exploitable par un filtre de Kalman),
- À partir d'un minimum d'hypothèses (amplitude et auto-corrélation bornées), via le concept de variance d'Allan plate.
- Méthode valable même lors de la perte de mesures.
- Résultats satisfaisants sur un système de navigation hybridée inertie/GPS

Perspectives

• Limitation du pessimisme :

- Mise au point d'une technique de bornage de covariance :
 - Contraindre l'écart-type de chaque composante de l'entrée inconnue à ne pas dépasser une certaine valeur.
- Investigation des approches multi-modèles :
 - 1 modèle = 1 PM1 d'auto-corrélation donnée.
 - Faire une somme pondérée des modèles revient à pondérer les écarts-types des PM1
 - =► réduction du pessimisme.

MERCI POUR VOTRE ATTENTION

Diapositive n° 35 / 35

Méthode d'est. d'état avec entrée inconnue -> Application à la navigation (2)

Modèle des erreurs de navigation :

Dérive gyroscopique

Cheminement aléatoire gyroscopique

$$\mathcal{A}\left(\left[\begin{array}{c}x\\y\\z\end{array}\right]\right) = \left[\begin{array}{ccc}0&-z&+y\\+z&0&-x\\-y&+x&0\end{array}\right]$$

$$\mathcal{S}(g_p, Z) = \begin{array}{c} g_p \\ R + Z \\ \end{array} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & +2 \end{bmatrix}$$
Rayon terrestre Pesanteur

Le 25 mai 2009

Diapositive n° 36 / 35

Méthode d'est. d'état avec entrée inconnue -> Application à la navigation (3)

 Modèle de connaissance de chacune des 3 composantes de la dérive gyroscopique :

- Décomposition en série de Fourier spatiale,
- Angle $\theta_e(t)$ intervenant dans les sinus et cosinus connu,
- Amplitudes inconnues.

En pratique, on ne peut considérer une infinité d'amplitudes :

Méthode d'est. d'état avec entrée inconnue -> Application à la navigation (4)

Modèle des erreurs de navigation :

Application : navigation hybridée inertie/GPS (5)

Le 25 mai 2009

Diapositive n° 39 / 35

Méthode d'est. d'état avec entrée inconnue -> Application à la navigation (12)

Résultats : erreurs de position avant les retours d'hybridation

			Solution proposée	1 markov. 2,5 deg/h	1 markov. 1,25 deg/h	Modèle harmonique	Navigation IP
	Pos. Nord	RMS erreur (u _d)	125	119	111	106	158
		Ecart-type (u _d)	235	299	162	91	
	Pos.	RMS erreur (u _d)	212	209	203	194	163
	Ouest	Ecart-type (u _d)	275	345	215	160	

നത								
le l	tio	Pos.	RMS erreur (u _d)	164	161	157	170	182
toir	ida	Nord	Ecart-type (u _d)	305	373	228	149	
jec	ybr	Pos.	RMS erreur (u _d)	292	322	283	319	297
Tra 1 ^{ère}	ď,h	Ouest	Ecart-type (u _d)	340	469	334	276	
	-							
n a		-						100

ure	Pos.	RMS erreur (u _d)	281	323	282	237	423
ducida	Nord	Ecart-type (u _d)	458	641	314	134	
^e cc /bri	Pos. Ouest	RMS erreur (u _d)	215	263	221	194	270
2 ^{nd(}		Ecart-type (u _d)	441	632	359	173	

Le 25 mai 2009

Trajectoire A

Trajectoire

Diapositive n° 40 / 35

Méthode d'est. d'état avec entrée inconnue -> Application à la navigation (12)

Résultats : erreurs de position avant les retours d'hybridation

			Solution proposée	1 markov. 2,5 deg/h	1 markov. 1,25 deg/h	Modèle harmonique	Navigation IP
2	Pos. Nord	RMS erreur (u _d)	125	119	111	106	158
		Ecart-type (u _d)	235	299	162	91	
	Pos. Ouest	RMS erreur (u _d)	212	209	203	194	163
		Ecart-type (u _d)	275	345	215	160	

0 0 C							
e E ure tion	Pos. Nord	RMS erreur (u _d)	164	161	157	170	182
toir oup ida		Ecart-type (u _d)	305	373	228	149	
jec ° cc ybr	Pos.	RMS erreur (u _d)	292	322	283	319	297
Tra 1 ^{ère} d'hy	Ouest	Ecart-type (u _d)	340	469	334	276	
e F urc	Pos. Nord	RMS erreur (u _d)	281	323	282	237	423
toir oup ida		Ecart-type (u _d)	458	641	314	134	
e co vbri	Pos.	RMS erreur (u _d)	215	263	221	194	270
Tra 2 ^{ndt} ď'hy	Ouest	Ecart-type (u _d)	441	632	359	173	

Le 25 mai 2009

Trajectoire A

Diapositive n° 41 / 35