

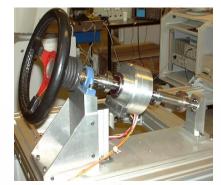
GT S3 (Sûreté-Surveillance-Supervision) & GT Fiabilité 31 janvier 2008

Réseaux de communication et sûreté de fonctionnement enjeux, problématiques, approches

gipsa-lab Jean-Marc THIRIET, UJF (Grenoble Universités)
GIPSA-Lab (UMR 5216)

Plan

- 1. Enjeux & problématique
- 2. Réseaux
- 3. Réseaux et sûreté de fonctionnement
- 4. Réseaux et systèmes
- 5. Conclusion


1. Enjeux

Niveau de sûreté (FMDS) d'un système à base de réseaux, réseaux filaires

1. enjeux, problématique

X by wire, steering by wire

Fonction direction (steering by wire)

- Probabilité que le véhicule ne tourne pas lorsque c'est demandé
- Probabilité qu'il tourne de manière intempestive

Evaluation difficile

- Réseau plus complexe qu'un ensemble de liaisons point à point
- Réseau plus complexe qu'un système à retard
- Interaction Réseau-systèmes

Problématique : Sdf de systèmes à base de réseaux, communications sans fil

1^{er} véhicule piloté

X by wire, brake by wire

2ème véhicule suiveur

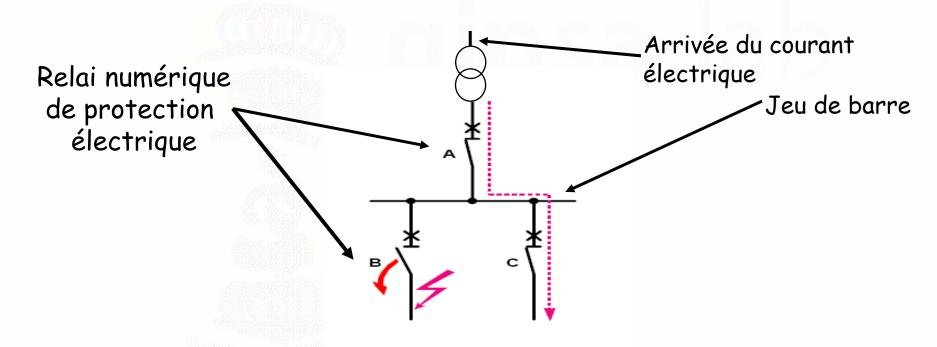
Conduite automatisée (train virtuel)

Fonction freinage

- Premier véhicule
 - Probabilité que le véhicule ne freine pas lorsque c'est demandé,
 - Probabilité qu'il freine de manière intempestive

Second véhicule

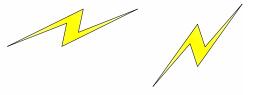
 Probabilité qu'il reçoive l'information de freinage du premier véhicule si tout est correct pour le premier véhicule


- ...

Système critique 1. enjeux, problématique

Sélectivité logique, installation de puissance électrique

Perturbation en B, envoi d'une info en A pour éviter que A ne s'ouvre



Système embarqué

(réseau filaire embarqué + réseau sans fil distant) à dynamique forte

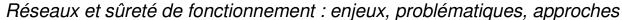
- Drone-hélicoptère
- Définition de la mission
 - Dynamique faible (déplacement en « ligne droite »)
 - Dynamique forte (ex : slaloms entre des arbres)
 - Environnement de communication perturbé (perturbations e.m., arbres)

Problématique

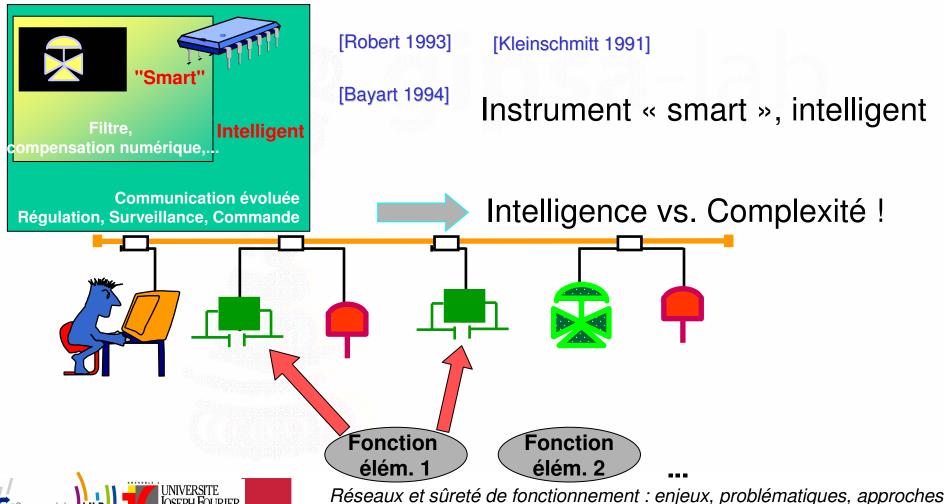
Composants des Systèmes d'Automatisation à Intelligence Distribuée

- Capteurs et actionneurs analogiques
 - Redondances matérielles et analytiques
 - Etudes "classiques" de SdF

- Capteurs et actionneurs numériques
 - Interfaces A/N, unité de traitement, temps de retard...
 - Logiciel, implémentation

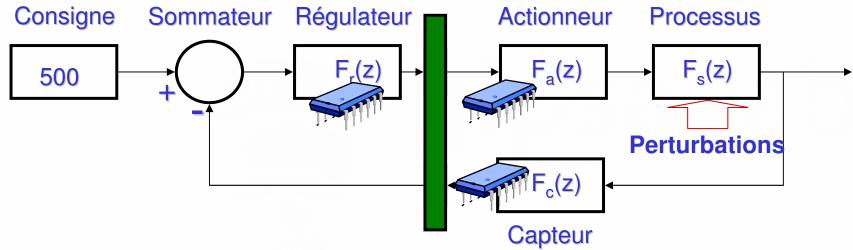


- Capteurs et actionneurs « smart »
 - Intelligence embarquée, décision locale
- Capteurs et actionneurs « intelligents »
 - Interface communicantes
 - Diagnostic, surveillance, vérification, prise de décision embarquée
 - Instrument acteur de l' « intelligence » globale du système



Systèmes à intelligence 1. enjeux, problématique distribuée

Architecture centralisée ⇒ architecture distribuée, SAID

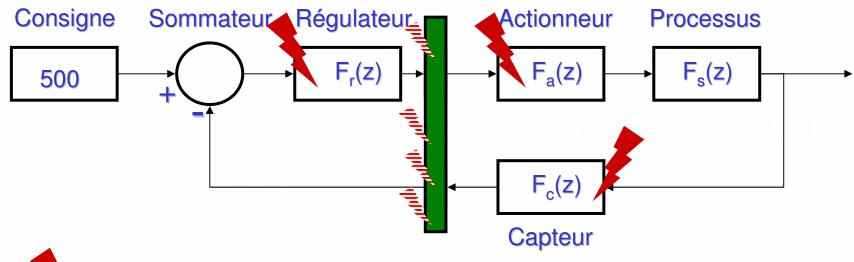


surete de fonctionnement : enjeux, problematiques, approches

Système commandé en réseau Système NCS (Networked Control System)

Réseau de communication

- 1. Composants continus/échantillonnés
- 2. Composant à événements discrets
- 3. Influence du réseau
 - retard de transmission
 - 2. gigue
 - 3. perte d'information


Système à retard

Analyse par simulation

Intégration des défaillances

Défaillance permanente Comn

Réseau de communication

Défaillance intermittente (filaire, sans fil)

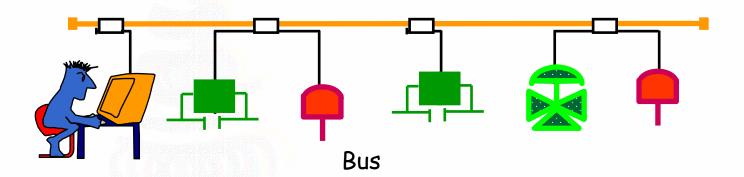
Modes de défaillance

- continus/échantillonnés
- à événements discrets

Echelles de temps

- Vitesse (taux de modulation, débit) du réseau
- -Constante de temps du système
- -Temps entre défaillances

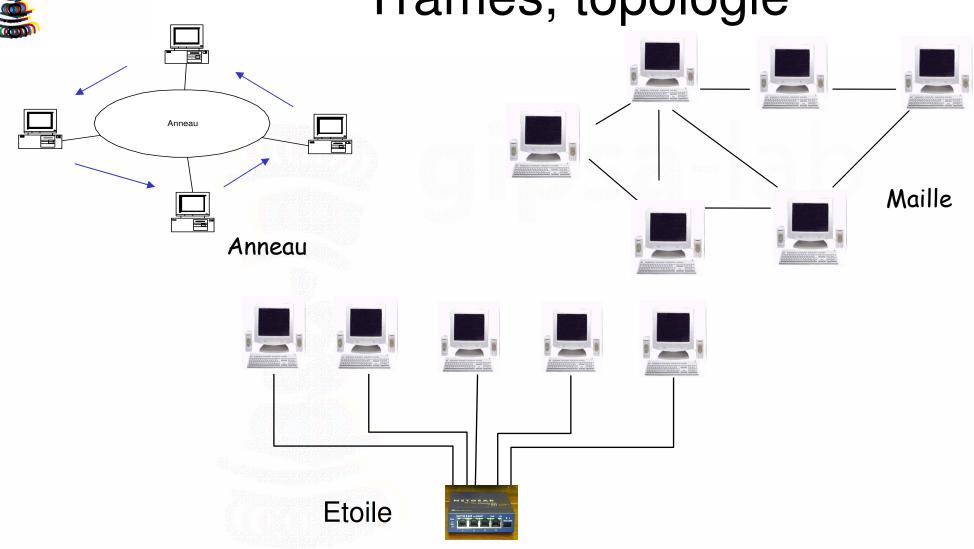
2. Le réseau


Trames, topologie

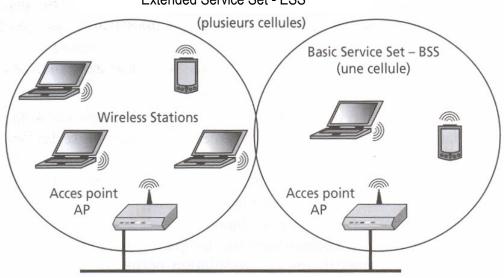
- -Trames de contrôle
- -Trames de données

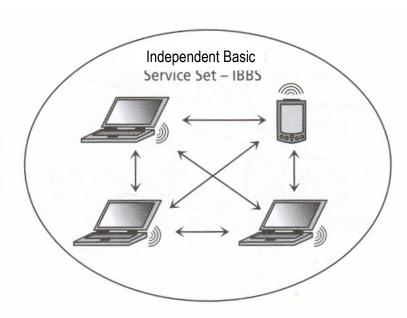
Inter-trames En-tête Contenu Fin de trame

Trame: 0101010101011001101111100000000011111


TOPOLOGIE

Trames, topologie





Topologies de réseaux sans fil

Extended Service Set - ESS

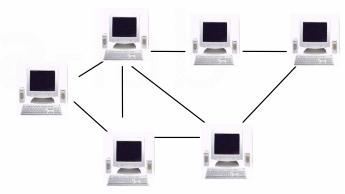
Distribution System -DS

Mode infrastructure

- -Plusieurs cellules
- -Les AP (point d'accès) sont reliés via un réseau câblé (DS, Distribution System)

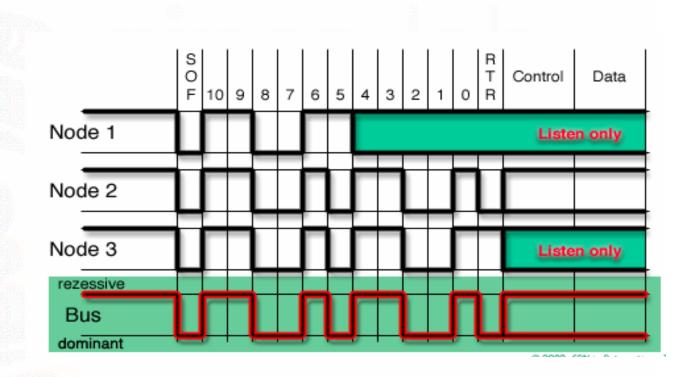
System) Architecture dynamique : A chaque instant, des machines peuvent entrer ou sortir du réseau

Mode ad hoc


- -Stations communiquant entre elles sans passer par un point d'accès
- -Réalisation rapide de communications entre deux stations sans fil
- -Pour pouvoir fonctionner sur un réseau étendu, ce mode doit être associé à un protocole de routage

Modes d'accès : accès aléatoire

- CSMA/CD (Carrier Sense Multiple Access /Collision Detection)
 - Carrier Sense : écoute de la porteuse
 - Multiple Access : plusieurs machines peuvent émettre simultanément (Accéder librement au bus, dès que le médium est libre sans autorisation préalable)
 - => risque de collision
 - en cas de collision :
 - 1. émission d'une séquence de brouillage
 - 2. après un délai : nouvelle tentative
 - 3. abandon après trop d'échecs
 - Collision Detection : Détection des erreurs de collision et traitement (protocole probabiliste, pas de priorité)
 - Ex sur Ethernet, chaque machine émet quand elle veut



CSMA/AMP Arbitration by Message Priority

Ordonnancement des messages en fonction de leur priorité

(ex : réseau CAN, Controller Area Network),

2 réseaux

CSMA/CA (Carrier Sense Multiple Access / Collision Avoidance)

Pour les réseaux sans fil, CSMA/CD pas possible

Car toutes les machines ne sont pas visibles à partir d'une machine donnée (problème de portée d'émission)

Station émettrice écoute le réseau

Si libre pdt un temps donné (*DIFS : Distributed Inter Frame Space*), la station émet une trame RTS (*Request to Send*, la trame RTS contient des infos sur le volume des infos à émettre et la vitesse)

Le récepteur (ou le point d'accès) répond par une trame CTS (Clear To Send) donnant l'autorisation

La station émettrice émet ensuite ses données

Lorsque toutes les données sont reçues, le récepteur envoie une trame ACK (*Acknowledgement*)

Les autres stations attendent pendant un certain temps (temps estimé de transmission du volume de données à la vitesse prévue)

Collision Avoidance (Evitement de collision, ex: Wi-Fi 802.11, Zig-Bee 802.15.4)

Modes d'accès : accès contrôlé

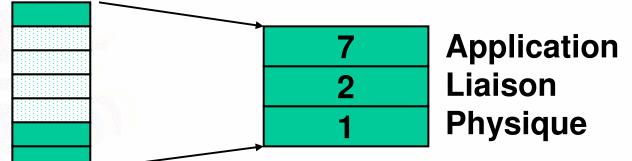
- Attente d'un droit de parole (éviter tout conflit)

gestion centralisée :
 1 station contrôlant les accès

– gestion décentralisée :

pl. stations contrôlant les accès

- Accès centralisé par "polling" :
 - Chaque abonné peut émettre à tour de rôle selon un ordre prédéfini.
 - Nécessité :
 - d'un contrôleur des accès
 d'une table de scrutation
 - Ex : Réseau WorldFIP
- Accès décentralisé (ex : Token Ring)
 - Création d'un anneau logique dans lequel tourne un jeton
 - Droit de parole et contrôle de l'accès détenu par le possesseur du ieton
 - possession du jeton limité dans le temps
 - Ex : Réseau ProfiBUS

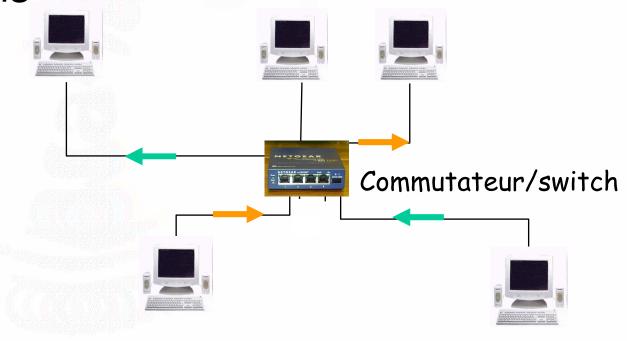


Cas du réseau de terrain

- Objectifs / contraintes / caractéristiques de la communication de terrain :
 - Informations de petite taille
 - Délais d'acheminement réduits
 - Coût des composants réduit
 - Solution généralement retenue :Simplification du modèle OSI :

Exemples de réseaux de terrain

- WorldFip (réseau français, Alstom), déterministe
- CAN (automobile, avionique (Airbus)),
 Arbitration by Message Priority
- Profibus (réseau d'automates, automates et capteurs/actionneurs)
- ASI (réseau de capteurs-actionneurs)



Ethernet commuté

- Ethernet = collisions
- Commutateur : délimite des zones « libres de collisions »

Réseaux de terrain vs. réseau ethernet commuté

- Ethernet : communauté universitaire
 - [J.D. Decotignie] (interopérabilité avec ethernet, utilisation d'éléments standards, réseau « multi-media »)
 - Origine : 10 Mb/s
 - FastEthernet: 100 Mb/s
 - GigaEthernet: 1 Gb/s
- CAN (Avionique/[FeT])
 - Compatibilité avec des éléments répandus dans l'industrie (notamment industrie automobile)
 - De 250 ko/s à 1Mb/s

25

Réseaux sans fil

No.	ZigBee	Wi-Fi
	IEEE 802.15.4	IEEE 802.11b
	2.4-2.4835 GHz (world), 902-928 MHz (USA) and 868-870 MHz (Europe)	2,4 GHz,
	from 10 to 75m	46 m indoor, 92 m outdoor
	250 kb/s (2.4 GHz), 40 kb/s (915 MHz), and 20 kb/s (868 MHz)	1, 2, 5.5, 11, 54 Mb/s
	2 ¹⁶ =65536 Nombre de noeuds	32
	100-1000+ Durée de vie des batteries j.	0,5-5
	30 ms Temps pour trouver un nouveau nœud dans le réseau	Up to 3s
	Reliability, low Power, low Cost	Speed, Flexibility
	Home, building, industrial monitoring and control (for small, cheap microprocessors, low rate control networks)	Web, Email, Video. (for PCs, laptops, PDAs)

Réseaux sans fil longue distance

- Wimax
- IEEE 802.16
- Range: 5 GHz, 2-11 GHz, 10-66 GHz
- Distance: 50 km, practically 5 8 km
- Débits: 70 Mb/s, 500 kb/s and 2 Mb/s
- Intérêt : Wide-Range
- Broadband access, "last mile" broadband connections
- Autre réseau sans fil grande distance : WRAN (Wireless Regional Area Network) IEEE 802.22

Réseaux sans fil et temps réel (temps critique)

- Zig-Bee
 - Supertrames :

Période active

Période inactive

CAP(CSMA/CA)

CFP (GTS)


Supertrame

CAP (Contention Access Period): tous les nœuds peuvent transmettre d'une façon aléatoire en respectant la durée d'un slot CSMA/CA

CFP (Contention Free Period) : Permettent de garantir l'accès au canal à un nœud pendant une durée déterminée en nombre de slots GTS

GTS (Guaranteed Time slots): Ce sont des slots temporels dédiés (le coordinateur pourra allouer un ou plusieurs slots à un nœud en particulier pour offrir certaines garanties temporelles).

Wi-Fi 802.11e

Supertrame

3. Réseaux et sûreté de fonctionnement

« Défauts » des réseaux

- Défauts réseaux
 - Retards : Certaine tolérance (gigue)
 - Pertes : (réémission, régénération, tolérances aux fautes)
 - [Kim, 1988]. CSD (control system deadline),
 - [Babak, 2003] [Zhang, 2001] stabilité des systèmes distribués en présence de pertes on peut se référer aux travaux de,
 - Altérations
 - Détection de l'altération par code détecteur d'erreur
 - Correction d'erreurs (si code correcteur)
 - Fonctionnement tolérant aux fautes (reconstruction de la (des) donnée(s) manquante(s))
 - Désynchronisation (protocole d'horloge, horloge externe)
 - Perturbations électromagnétiques (voir FeT/Avionique ???)
 - Surcharge due au réseau partagé

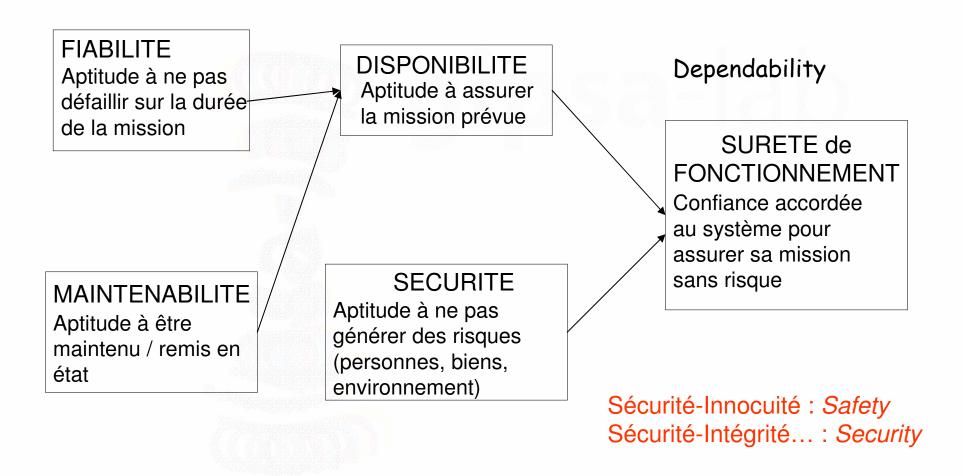
Retard

- Réseau déterministe (accès contrôlé)
 - Tâche 1 : tous les T=0,01 s.
 - Tâche 2 : tous les T=0,02 s.
 - Tâche 3 : tous les T=0,01 s.
- 132131321313213
 - Tâche 2 périodique
 - Tâches 1 et 3 périodiques avec de la « gigue »
- Retards dus
 - Aux temps de transferts
 - A la politique de synchronisation (time-driven, event-driven,...)
- Types de retards
 - Retard moyen (borné, non borné)
 - « pire » Retard (retard dans le pire cas)
- Réseau non déterministe (accès aléatoire)
 - Priorité
 - Réémission de tâches suite à la détection d'erreurs

Réseaux sans fil

- Même problèmes que les réseaux filaires +
- Perturbations électromagnétiques (plus sensible)
- Réseau pas toujours disponible (fonctionnement normal)
 - Non visibilité, retards dus aux réflexions (réception non directe)
 - Pas toujours « on » à cause de la gestion de l'énergie (système embarqué)
- Perturbations liées à la mobilité
 - Distance émetteur-récepteur
 - Obstacles entre émetteur et récepteur
- Topologie du réseau évoluant au cours du temps (stations mobiles, communication entre un mobile et plusieurs stations au sol), (hand-over, roaming)

CONSEQUENCES


- Diminution du débit
- Perte de la communication
- Plus grande sensibilité au "piratage"

Sûreté de fonctionnement

RAMS: Reliability, Availability, Maintainability, Safety

Sécurité « informatique » (security)

Propriétés propres à la sécurité

- Confidentialité : prévenir la visualisation d'information par des personnes non autorisées
- Intégrité: prévenir la non détection de modifications de l'information par des personnes non autorisées
- <u>Authentification</u>: permettre la vérification de l'identité des utilisateurs

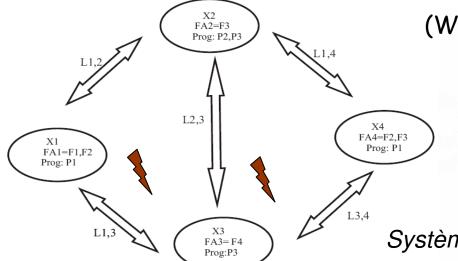
Propriété liée à la sécurité

 <u>Disponibilité</u>: prévenir que des personnes non autorisées ne vont pas empêcher l'accès ou l'utilisation par des utilisateurs autorisés

Réseaux de sécurité (livre CIAME)

- Safety-Bus p, un des premiers réseaux avec un objectif de sécurité
- 2 protocoles de sécurité basés sur les couches basses de CAN : CANopen-Safety et TTP (Time-Triggered Protocol),
- FlexRay, conçu pour des applications automobiles sûres de fonctionnement,
- ProfiBus qui est devenu ProfiSafe, grâce à son extension sécurisée,
- ASI Safety at Work, extension de sécurité du réseau de bas niveau ASI.
- Trames périodiques
- Redondances
- Moniteur de sécurité (ex sur ASI) : Elément passif détectant les suites de 4 zéros consécutifs indiquant un problème
 - un utilisateur a déclenché un système de sécurité et pressé un arrêt d'urgence
 - des défauts ont été détectés sur le bus de communication ou sur l'un des composants
- Communication sécurisée entre des composants de sécurité (CRC, accusé de réception, vérification de la durée de transmission => trames spécifiques à la sécurité)

35


Sûreté de fonctionnement des réseaux

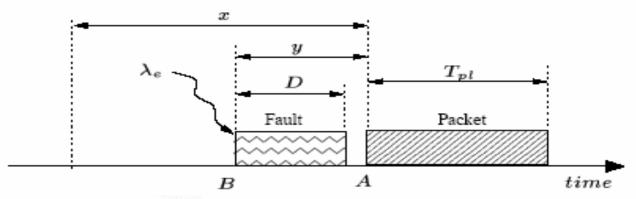
- Evaluation du réseau « seul »
 - Qualité de service de la communication
 - Sensibilité aux perturbations
- Réseau vu comme un « brin » de communication
- Réseaux vu comme plusieurs « brins » de communication « indépendants »

Intégration de la fonction communication dans l'étude de la fiabilité (système distribué : approches informatiques)

(Wang et al, 2002) et (Lin et al, en 2001)

$$FA_1 = \{F_1, F_2\}$$
 $PRG_1 = \{P_1\}$ $FN_1 = \{F_1, F_2, F_3\}$ $FA_2 = \{F_3\}$ $PRG_2 = \{P_2, P_3\}$ $FN_2 = \{F_1, F_2, F_4\}$ $FA_3 = \{F_4\}$ $PRG_3 = \{P_3\}$ $FN_3 = \{F_1, F_2, F_3, F_4\}$

Système distribué avec 4 nœuds et 5 liaisons


 $FA_4 = \{F_2, F_3\} PRG_4 = \{P_1\}$

- Chaque liaison possède deux états: état de marche ou de panne
- Taux de défaillance des liaisons indépendants et exponentiellement distribués
- Taux de réparation des liaisons indépendants et exponentiellement distribués
- Pendant une unité de temps, une seule liaison peut tomber en panne ou être réparée

Intégration de la fonction communication dans l'étude de la fiabilité (approches centrées réseau)

- (Tindell, 1997) temps de réponse en présence de fautes transitoires
- (Navet et al ,2000), (Portugal et al, 2002) probabilité qu'un message manque son délai
 - Un message qui manque son délai → la défaillance de la fonction communication
- [Portugal et Carvalho, 2001] : approche basée sur les chaînes de Markov pour évaluer l'indisponibilité de la fonction communication (fautes permanentes)
- ces approches tiennent compte seulement de la fonction communication et ne prennent pas en compte l'application qui s'appuie sur ce réseau
- un point de vue sur la défaillance

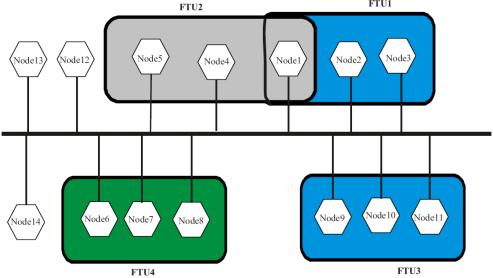
Conclusion sur la SdF des réseaux

- Approche orientée fonction de communication
- Donne la possibilité de mesurer le niveau de qualité du réseau
- Permet de certifier la communication
- Ne prend pas en compte les interactions avec le système
 - Etat du système
 - Successions de défaillances (ex : bavardage d'un composant)
 - Taux de charge du réseau en fonction des sollicitations

4. Systèmes et réseaux

4.1 Approches évaluation de la sûreté de fonctionnement4.2 Approches co-design

- Approches évaluation de la sûreté de fonctionnement
 - Modèle fonctionnel
 - Modèle dysfonctionnel
- Approches co-design

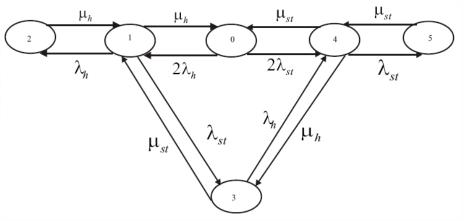

4.1.1 Systèmes en réseau

Réseau parfait

Comparaison des paramètres de la sûreté de fonctionnement pour plusieurs architectures d'un système distribué

[Pimentel et Salazar, 2002]

- Plusieurs composants appelés nœuds.
- Les nœuds groupés dans des unités appelées unités de tolérance aux fautes FTU
- une unité FTU est en bon fonctionnement si l'un de ses nœuds est en état de marche
- Le bon fonctionnement du système exige le bon fonctionnement de tous les FTUs (4 dans l'exemple)
- Les paramètres évalués sont la fiabilité et le temps moyen pour la première défaillance (MTTFF Mean Time To First Failure).
- Les seules fautes considérées sont les fautes au niveau des nœuds, le réseau est considéré comme étant toujours fiable.
- L'approche est basée sur la modélisation par réseau de Petri stochastique et les résultats sont évalués en utilisant la simulation de Monte-Carlo


Approche basée sur les chaînes de Markov pour évaluer la disponibilité de tels systèmes

- Hypothèses :
- Tous les sites ont le même taux de défaillance matérielle suivant une distribution exponentielle de valeur moyenne.
- Tous les sites ont le même taux de défaillance logicielle suivant une distribution exponentielle de valeur moyenne.
- états considérés pour le matériel et pour le logiciel
 - (1) état de bon fonctionnement
 - (2) état de panne.

Seules les fautes permanentes sont considérées.

- temps de réparation qui inclut le temps de détection de la défaillance et la réparation
 - loi exponentielle de valeur moyenne pour les composants matériels et pour le logiciel.
- Défaillances supposées indépendantes.
- Un site est en état de marche si le matériel et le logiciel associés sont aussi en bon état

[Lai et al, 2002]

Etat 0 : état initial, tous les composants sont en bon état

Etat 1 : 1 matériel en panne, un site en marche

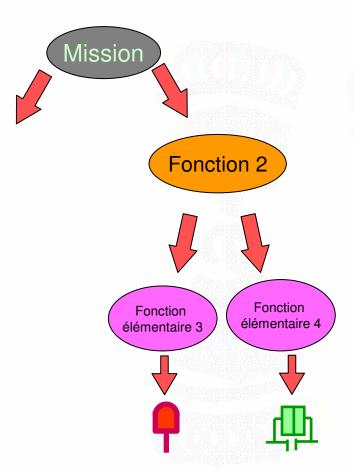
Etat 2 : 2 matériels en panne, système en panne

Etat 3 : 1 matériel en panne et 1 logiciel en panne, système en panne

État 4 : 1 logiciel en panne, 1 site en marche

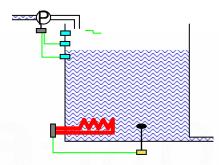
Etat 5 : 2 logiciels en panne, système en panne

 systèmes à temps souple où les retards de l'envoi de l'information entre les différents composants n'affectent pas trop les performances de l'application

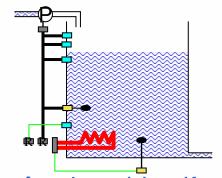

4.1.2 Réseau pouvant défaillir

Approche statique, basée sur l'architecture

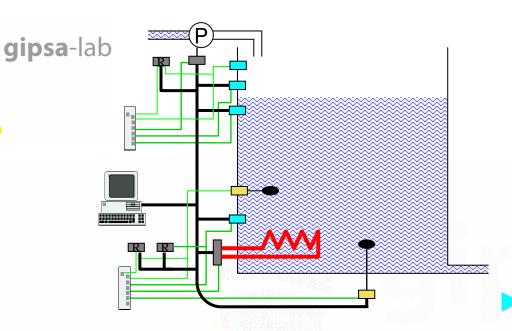
Evaluation du niveau de fiabilité et de disponibilité d'une architecture en réseau

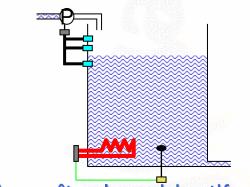

- Etats => disponibilité
- Propagation des défaillances => fiabilité
- Utilisation de diagrammes de décision binaire

[Conrard 2004]



4.1 Evaluation SdF


Résultats


- En accord avec les objectifs de SdF
 - la solution la plus économique

- Accroître les objectifs de fiabilité
 - Une solution encore plus sûre

 Architecture matérielle préliminaire

Accroître les objectifs de SdF

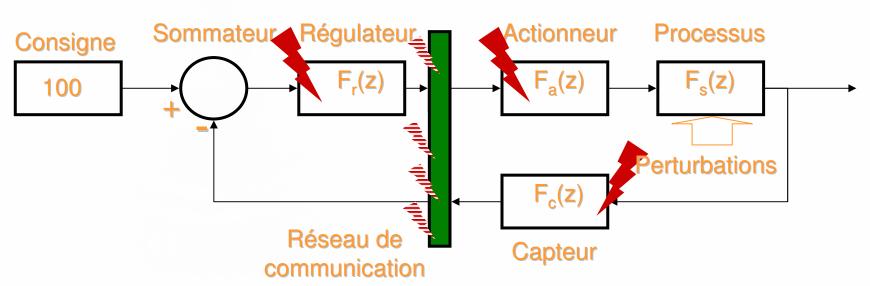
Une solution plus sûre

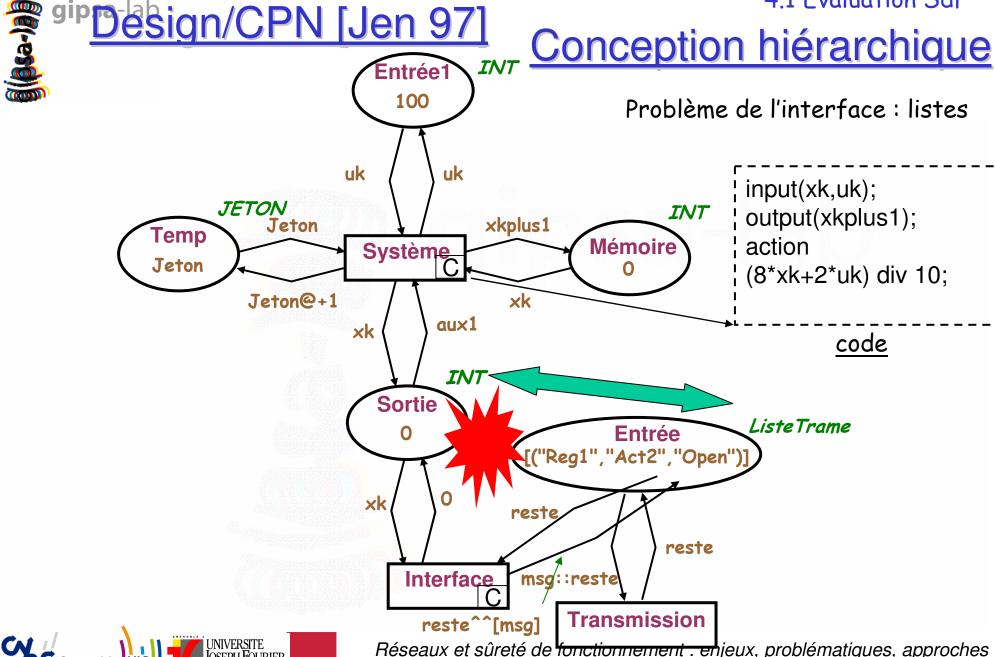
4.1.3 interaction réseau-système

gipsa-lab

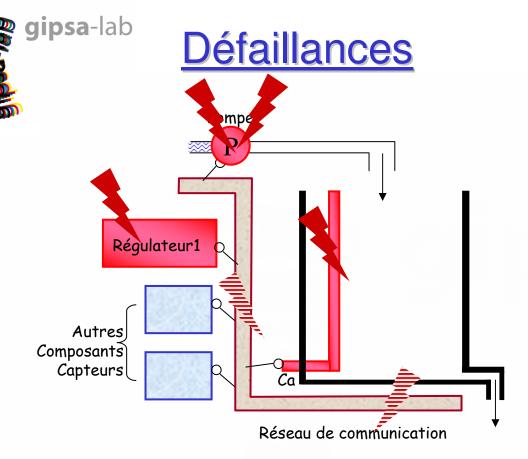
Evaluation dynamique de la sûreté

de fonctionnement


Etape - Modélisation



Interconnexion des composants



4.1 Evaluation SdF

4.1 Fyaluation SdF

6 événements :

- 1. Défaillance du régulateur
- 2. Défaillance du capteur

Défaillances de l'actionneur

- 3. Usure
- 4. Blocage

Erreurs du réseau

- 5. Perte d'une trame
- 6. Altération d'une trame

[Barger 2003]

Mission

- 2. Maintenir le niveau Ne maintient pas

Mode de défaillance

- Remplir la cuve → Ne remplit pas

Défaillances

6 événen Perobabilités

Défaillance du taponite)

fonction de défaillance du taponite)

temps Défaillances de l'actionneur
3. Usure 1/(50 Te)*

Défaillances en de l'actionneur
3. Usure 1/(50 Te)*

Défaillances en de l'actionneur
3. Usure 1/(50 Te)*

Défaillances en de l'actionneur
3. Usure 1/(50 Te)*

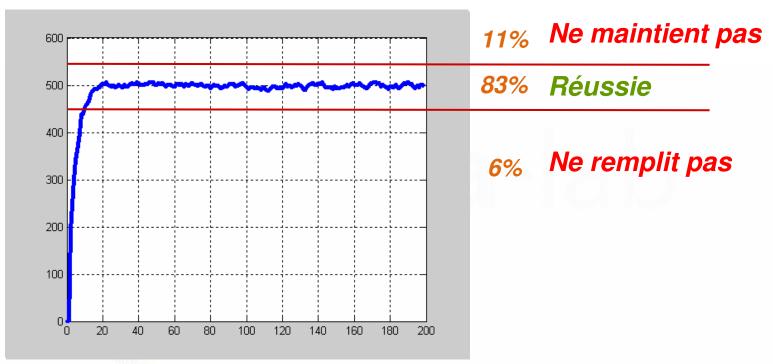
Péraillances de l'actionneur
3. Usure 1/(50 Te)*

Défaillances de l'actionneur
3. Usure 1/(50 Te)*

Péraillance du taponite)

Altération type de l'actionneur
3. Usure 1/(50 Te)*

Altération type de l'actionneur
4. Alteration type de l'actionneur
4. Alterat


*pendant le fonctionnement

Simulation Monte Carlo

Résultats

Total simulations	Simulation finie comme		
	Ne remplit pas	Réussie	Ne maintient pas
6734	389	5620	725
100%	6%	83%	11%

L'importance d'un scénario

Conclusion cas statique

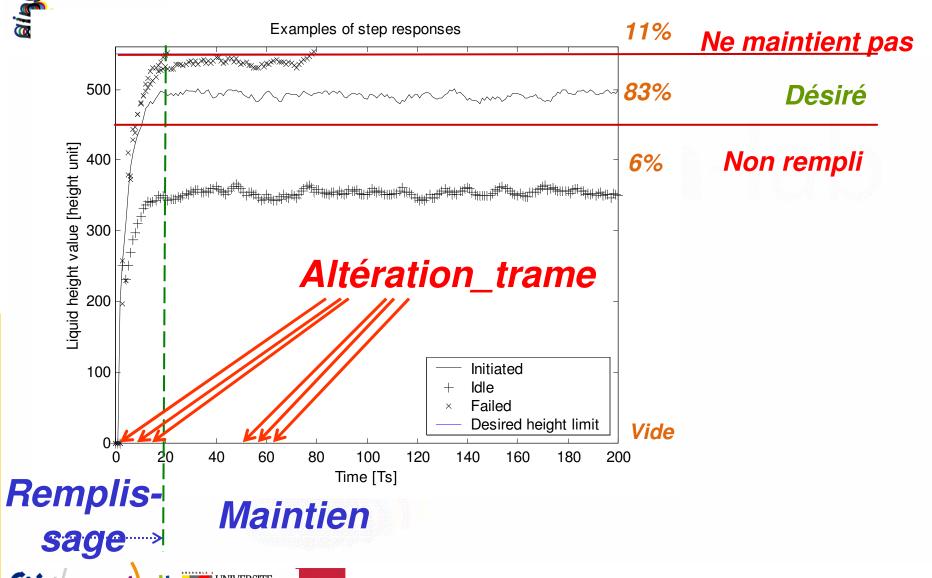
Evénements réseau et leur influence cumulée peu importants

débordement est dû aux autres événements

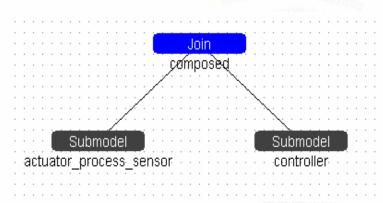
Problème: 50% des scénarios menant au débordement ne contient que des problèmes dus au réseau de communication

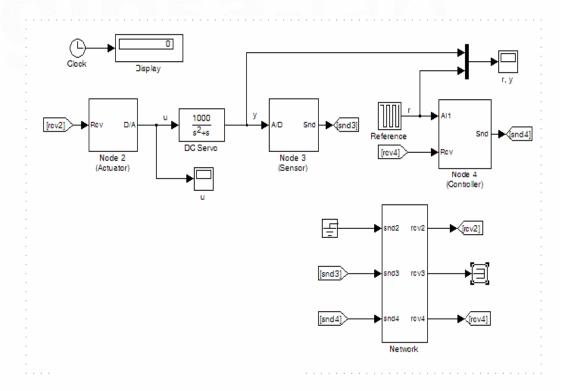
besoin d'une autre approche d'analyse: analyse dynamique

L'importance d'une erreur réseau dépend de l'état* du système


*Etat au sens de l'automatique, variable interne (niveau) intégrant en elle l'historique fonctionnel et dysfonctionnel du système

4.1 Evaluation SdF

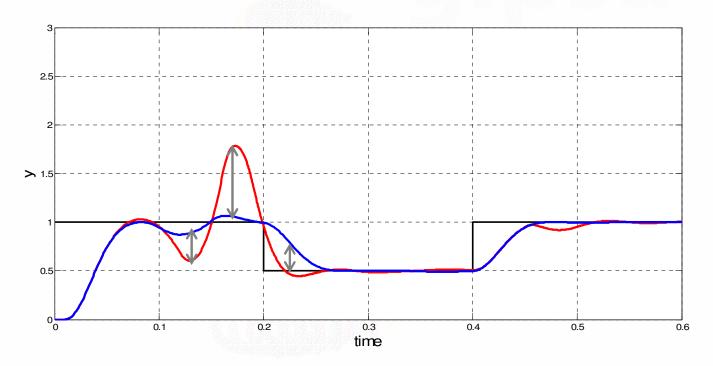

L'importance d'un scénario : Cas dynamique



gipsa-lab Impact de la perte de messages sur la fiabilité du système

SAN (Mobius tool)

Truetime

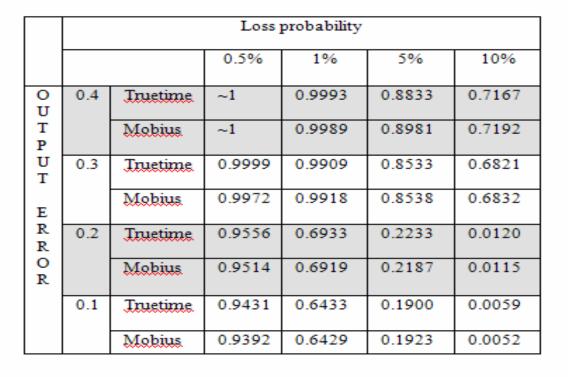


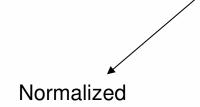
Example

- Impact of lost messages on the system reliability
 - How we detect a failure situation?

Actual output

output error


Reference output



SAN/Truetime

MonteCarlo approch 1000 trial for Each case

SAN

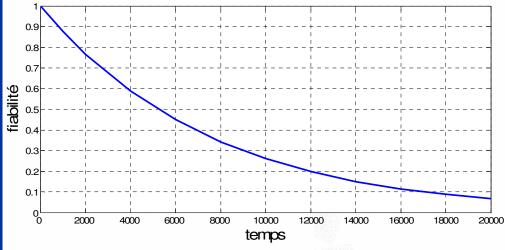
- + widely used for dependability evaluation
- + analytical and simulation solutions

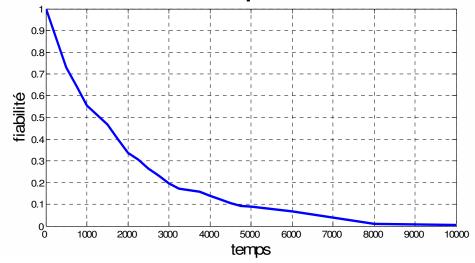
Truetime


- -never used for reliability evaluation
- -Only simulation solution
- + the use of already simulink model

58

Etude de sensibilité

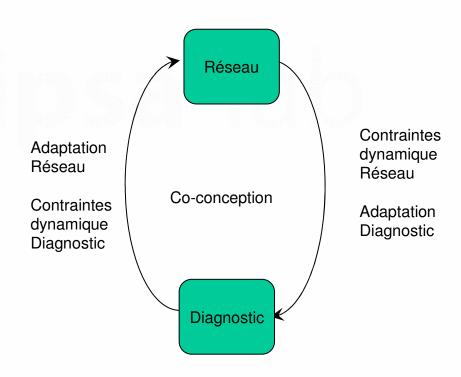

- Influence du débit de transmission sur la fiabilité.
- Courbes correspondant aux différentes valeurs de périodes d'échantillonnage



Trois boucles partageant le même medium

Cas 2 : boucle_2 possède la plus grande priorité

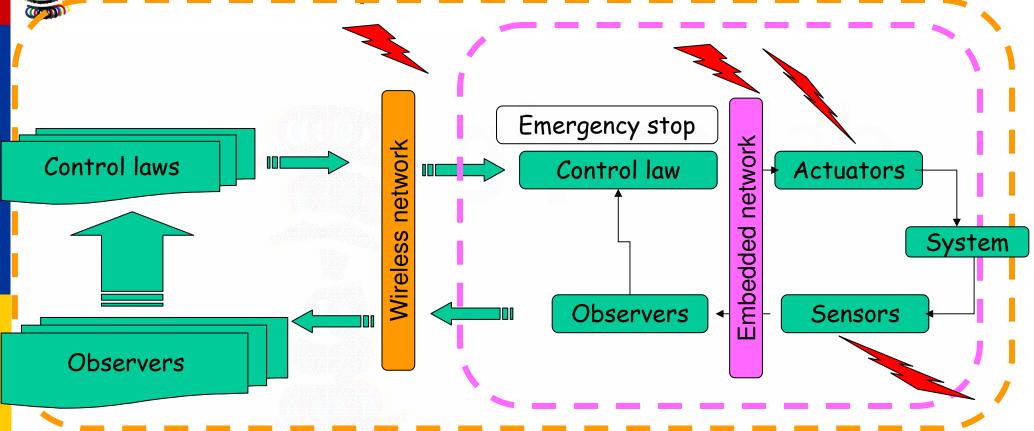
Cas 1 : la boucle_1 possède la plus grande priorité


4.2 Approches co-design

Introduction

- Schéma co-design
- Approche réseau en fct des contraintes systèmes
 - Contrôle du réseau
- Approche système en fct des contraintes réseaux
 - Contrôle/diagnostic via le network

Diagnostic \Leftrightarrow sûreté de fonctionnement


Drone-hélicoptère

Purpose: Networked Control

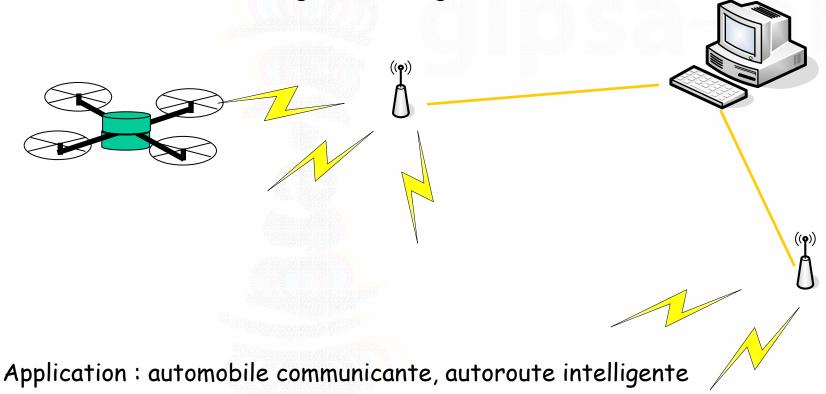
GROUND STATIONS

Wireless loop

Drone-Ground stations communication

EMBEDDED (communication)

Embedded local loop



64

The roaming in ZigBee network

Roaming – switching between different stations

5. Conclusions et perspectives

Conclusion

Réseau

- Topologie, méthode d'accès, priorités...
- Pbs des réseaux filaires
- Pbs des réseaux sans fil

SdF

- Sdf de réseaux
- Sdf vision système (NCS)

Problématique importante

Nombreux projets

- nationaux (ANR [Cran, Laas, Inria Rhone alpes, Loria, GIPSA-Lab],
- GIS [UTT, UTC, LAGIS, LAMIH, Crestic, CRAN, LORIA, EDF, CEA]
- européens Necst, (avec un nouvel appel à projets en ICT Information and Communication Technologies [Network, embedded system, Control]

De nombreux acteurs, pluridisciplinarité

Un groupe de travail sur cette thématique : Ciame (Constituants Intelligents pour l'automatisation et la mesure) réunion régulière sur Paris

- Sortie d'un ouvrage sur la Sdf des systèmes intégrant un réseau de terrain
- Une session proposée à CIFA 08 et au World IFAC sur les aspects bas coûts

67

Modélisation de réseaux

- Méthodes & Outils, de type graphes
 - Automates
 - Files d'attente
 - Réseaux de Petri (MocaRP, DesignCPN,...) et extensions (Réseaux d'Activités stochastiques (Möbius)
 - Simulateur de réseaux (OpNet, Network Simulator)
- Approches probabilistes
 - Chaînes, graphes de Markov

Outils-méthodes?

- Réseaux de Petri
 - Colorés, Stochastiques, Temporisés, à jetons vieillissants
 - Etude des graphes de marquage ou d'occurrences
 - Mise en évidence d'états catastrophiques
 - Recherche des scénarios conduisant à ces états
- Réseaux d'Activités Stochastiques
- True-Time
- Réseaux bayésiens dynamiques
- Simulation de Monte-Carlo
- ???

Simplifications des modèles

- Isoler des ensembles cohérents communicants (avec des interfaces d'entrées-sorties)
- Puis composer ces sous-ensembles afin d'obtenir un modèle global
 - synchronisation entre les modèles des différents sous-systèmes
 - messages
 - variables partagées
- Aspect réseau partagé difficile, mais simplifié
 - Si réseau déterministe (TDMA) => permet de garantir un taux de communication (difficile en sans fil)
 - La sensibilité aux perturbations e.m. demeure (cause commune)
 - Si protocole de réseau de type (m,k)-firm (garantit un nombre de trames lié à une tâche sur une fenêtre temporelle) [Y. Q. Song]
 - Mais toujours dépendance
- Utilisation de méthodes de Monte-Carlo sur des cas –types
 - Analyse de sensibilité de certains paramètres (retards, pertes)
 - Généralisation

70

Aspects réseaux

- Travail sur les protocoles
 - Temps réel, temps critique, routage
- Travail sur l'information
 - Compression, information partielle (résolution et niveau de confiance variables)

Réseaux de capteurs et MANET (Mobile ad hoc networks)

- Ensemble de « micro- » capteurs autonomes communicants distribués
 - Échange d'informations
 - Elaboration d'une stratégie globale (mesure, reconnaissance, validation)
 - Coopération des éléments (« intelligence distribuée »)
- Topologie et organisation dynamiques
 - Objets entrants et sortants du réseau à tout moment
 - Eventuellement objets mobiles
- Aspects routages dynamique
- Aspects « low cost » et faible énergie (mise en veille)

Aspects sûreté de fonctionnement dynamique

- Communauté fiabilité dynamique
- Sûreté de fonctionnement a priori d'une mission
 - Fonction de la mission (ex : niveau de dynamique d'un drone
 - Probabilité de passer dans un environnement perturbé ai niveau des communications (perturbations e.m., géographiques)
- Sûreté de fonctionnement dynamique
 - Elaboration on-line de la SdF en fonction de l'état du système, de l'évolution de la mission...

Références bibliographiques

- M. A. Azgomi & A. Movaghar Definition and analysis of cloured stochastic activity networks Technical report, Dept. Of Computer Engineering, Sharif University of Technology, Tehran, Iran, 2004.
- P. Barger Evaluation et validation de la fiabilité et de la disponibilité des systèmes d'automatisation à intelligence distribuée, en phase dynamique – thèse de l'Université Henri Poincaré Nancy 1, 15 décembre 2003.
- M. Bayart Instrumentation intelligents, systèmes automatisés de production à intelligence distribuée Habilitation à Diriger des Recherches, USTL, Lille, 21 décembre 1994.
- A. Cervin, D. Henriksson, B. Lincoln, J. Eker, K.E. Årzén How does control timing affect performance? IEEE Control Systems Magazine, JUne 2003, Vol. 23, N.3
- Groupe CIAME Réseaux de terrain, description et critères de choix Hermes, Paris, 1999.B. Conrard –
 Contribution à l'évaluation quantitative de la sûreté de fonctionnement des systèmes d'automatisation en
 phase de conception thèse de l'Université Henri Poincaré Nancy 1, 24 septembre 1999.
- Blaise Conrard, Jean-Marc Thiriet, Michel Robert Problems of precision for control loops implanted on Distributed Automation System – CESA'98 (Computational Engineering in Systems Applications)/IMACS/IEEE, Hammamet/Nabeul (Tunisie), avril 1998, pp. 180-185, vol. 1.
- M. Conti, S. Giordano Multihop ad hoc networking: the theory IEEE Communications, Vol 45, n°4, p.78, avril 2007.
- R. David, H. Alla Du Grafcet aux réseaux de Petri Hermes, Paris, 1992, 1997.
- M. Diaz Les réseaux de Petri, modèles fondamentaux Hermes, Paris, 2001.
- JP Georges Systèmes contrôlés en réseau : évaluation de performances d'architectures ethernet commutées thèse UHP-CRAN, Nancy, 2005.
- W. Hu, D. Willkomm, G. Vlantis, M. Gerla, A. Wolisz Dynamic frequency hopping communities for efficient IEEE 802.22 operation IEEE communications, vol 45, n°5, mai 2007, p. 80

Références bibliographiques

- K. Jensen Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use Monographs in Theoretical Computer Science, Springer-Verlag, 2nd corrected printing 1997.
- Guy Juanole Réseaux de communication et automatique *Journées "Automatique et Communication"*, 13-14 mars 2001.
- G. Juanole, I. Blum Quality of service of real time networks and performances of distributed applications
 LAAS report 99166, avril 1999.
- F. Jumel, J.M. Thiriet, J.F. Aubry, O. Malasse "Towards an information-based approach for the dependability evaluation of distributed control systems" - 20th IEEE Instrumentation and Measurement Technology Conference (IEEE/IMTC2003), Vail (Colorado, United States), 20-22nd May 2003, pp. 270-275.
- P. Kleinschmidt, F. Schmidt How many sensors does a car need? Eurosensors V, Roma, 2 October 1991, pp.1-13.
- P.R. Kumar New technological vistas for systels and control IEEE Control Magazine, February 2001
- M.J. Lee, J. Zhang & al. A new taxonomy of routing algorithms for wireless mobile ad hoc networks: the component approach IEEE p. Communications, Vol. 44, N° 11, novembre 2006, 116
- K. Lu, Y. Qian A secure and service-oriented network control framework for WIMAX network IEEE Communications, Vol 45, N° 5, p. 124, mai 2007
- Stéphane Mocanu Cours de réseaux, ENSIEG, 2005
- R. M. Murray, K.J. Åström, S. P. Boyd, R. W. Brockett, G. Stein Future directions in control in an information-rich world, IEEE Control Magazine, April 2003, Vol. 23, n. 2
- Natale, O.R.; Sename, O.; Canudas-de-Wit, C.; Inverted pendulum stabilization through the Ethernet network, performance analysis American Control Conference, 2004. Proceedings of the 2004 Volume 6, 30 June-2 July 2004 Page(s):4909 4914 vol.6
- Q. Ni, A. Vinel, Y. Xiao, A. Turlikov, T. Jiang Investigation of bandwidth request mechanisms under point-to-multipoint mode of Wimax networks IEEE Communications, Vol 45, N°5, p. 132, mai 2007

gipsa-lab

Références bibliographiques

- S.I. Niculescu Systèmes à retard, aspects qualitatifs sur la stabilité et la stabilisation Diderot éditeur, Paris, 1997.
- D. Niyato, E. Hossain Integration of WImax and Wifi: optimal pricing for nadwidth sharing IEEE Communications, Vol 45, N° 5, p. 140, mai 2007.
- L. Pelusi, A. Passarella, M. Conti Opportunistic networking: data forwarding in disconnected mobile ad hoc network, IEEE Communications, Vol. 44, N° 11, novembre 2006.
- S.A. Reinemo, T. Skeie, T. Sodring, O. Lysne, O. Torudbakken An overview of QoS capabilities in InfiniBand, Advanced Switching Interconnect, and Ethernet – IEEECommunications, Vol 44, n° 7, juillet 2006, page 32
- M. Robert, M. Marchandiaux, M. Porte Capteurs Intelligents et Méthodologie d'Evaluation Hermès, 1993.
- D. J. Smith & K. G. Simpson Functional safety (second edition) a straightforward guide to applying IEC 61508 and related standards Elsevier, 2004.
- Y. Q. Song performance analysis and improvement of zig-bee routing protocol Fet, 2007, Toulouse.
- J.M. Thiriet Habilitation à Diriger des Recherches de l'Université Henri Poincaré Nancy 1 en Automatique : "Sûreté de fonctionnement de Systèmes d'Automatisation à Intelligence Distribuée" CRAN-UHP, Nancy, 16 décembre 2004.
- Törngren M. Fundamentals of implementing real-time control applications in distributed computer systems, Real-Time Systems Journal, Volume 14, Number 3, May 1998.
- V. Volovoi Modeling multiphased missions using stochastic Petri nets with aging tokens RAMS'04, Annual Reliability and Maintainability Symposium, Los Angeles, janvier 2004.
- G.C. Walsh, H. Ye Scheduling of networked control systems IEEE control Magazine, février 2001.
- Witrant, E.; Canudas-De-Wit, C.; Georges, D.; Alamir, M.; Remote stabilization via time-varying communication network delays: application to TCP networks Control Applications, 2004. Proceedings of the 2004 IEEE International Conference on Volume 1, 2-4 Sept. 2004 Page(s):474 479 Vol.1
- J. Zaytoon Systèmes dynamiques hybrides traité ic2 série systèmes automatisés, Hermes, 2002.
- W. Zhang, M.S. Branicky, S.M. Philips Stability of networked control systems IEEE control Magazine, février 2001.

Remerciements

- C. Aubrun (CRAN, Nancy)
- JF Aubry (CRAN, Nancy)
- P. Barger (Heudiasyc, Compiègne)
- M. Bayart (LAGIS, Lille)
- C. Berbra (GIPSA-Lab, Grenoble)
- L. Cauffriez (LAMIH, Valenciennes)
- P. Charpentier (INRS, Nancy)
- J. Ciccotelli (INRS, Nancy)
- B. Conrard (LAGIS, Lille)
- J. Galdun (Univ. Kosice, Slovaquie)
- D. Genon-Catalot (LCIS, Valence)
- S. Gentil (GIPSA-Lab, Grenoble)

- R. Ghostine (CRAN, Nancy)
- M. Haffar (GIPSA-Lab, Grenoble)
- Z. Khan (GIPSA-Lab, Grenoble)
- S. Lesecq (GIPSA-Lab, Grenoble)
- J. Ligus (Univ. Kosice, Slovaquie)
- A. Mechraoui (GIPSA-Lab, Grenoble)
- M. Robert (CRAN, Nancy)
- E. Rondeau (CRAN, Nancy)
- C. Simon (CRAN, Nancy)
- MC Suhner (CRAN, Nancy)
- M. Wahl (INRETS, Villeneuve d'Ascq)
- P. Weber (CRAN, Nancy)
- ...

Merci à tous pour votre attention!

