Introduction	Problem formulation	Filter design	Example	Conclusion

Robust Fault detection for uncertain switched systems: \mathcal{H}_∞ approach

Ahmad Farhat¹ Damien Koenig²

1,2University Grenoble-Alpes, GIPSA-LAB, France

ahmad.farhat@gipsa-lab.grenoble-inp.fr damien.koenig@esisar.grenoble-inp.fr

Gdr MACS S3

ENSAM Paris, Ferbuary 04, 2016

Introduction	
0000	

Motivations

Passive security systems

- Airbag
- Security belt

- ABS : Anti-lock braking system
- ESP : Electronic stability program
- ACC : Autonomous cruise control
- Suspension control

Introduction ●○○○	Problem formulation	Filter design	Example 00000000	Conclusion
Motivations				

Passive security systems

- Airbag
- Security belt

- ABS : Anti-lock braking system
- ESP : Electronic stability program
- ACC : Autonomous cruise control
- Suspension control

Introduction ●○○○	Problem formulation	Filter design	Example 00000000	Conclusion
Motivations				

Passive security systems

- Airbag
- Security belt

- ABS : Anti-lock braking system
- ESP : Electronic stability program
- ACC : Autonomous cruise control
- Suspension control

Introd	luction
000	0

Motivations

Passive security systems

- Airbag
- Security belt

- ABS : Anti-lock braking system
- ESP : Electronic stability program
- ACC : Autonomous cruise control
- Suspension control

Introduction	
0000	

Motivations

Passive security systems

- Airbag
- Security belt

- ABS : Anti-lock braking system
- ESP : Electronic stability program
- ACC : Autonomous cruise control
- Suspension control

Introduction •••••	Problem formulation	Filter design	Example 0000000	Conclusion
Motivations				

Passive security systems

- Airbag
- Security belt

- ABS : Anti-lock braking system
- ESP : Electronic stability program
- ACC : Autonomous cruise control
- Suspension control

Introduction •••••	Problem formulation	Filter design	Example 0000000	Conclusion
Motivations				

Passive security systems

- Airbag
- Security belt

Active security and comfort systems

- ABS : Anti-lock braking system
- ESP : Electronic stability program
- ACC : Autonomous cruise control
- Suspension control

Problematic

What happens in case of sensors/actuators failure?

Could we avoid dramatic situation by detecting/estimating these faults?

Introduction ○●○○	Problem formulation	Filter design	Example 0000000	Conclusion
Outline				

Introduction

- Motivations
- Backgrounds

Problem formulation

- Assumptions
- Formulations

Filter design

- Switched \mathcal{H}_{∞} problem
- Robust fault estimation
- Improved Robust fault estimation

Example

- Numerical example
- Vehicle fault detection

5 Conclusion

Introduction	Problem formulation	Filter design	Example 0000000	Conclusion
Backgrounds				

- A common fault detection technique is to calculate a residual signal.
- $\bullet\,$ In this study, we consider the model based techniques, and a focus on \mathcal{H}_∞ fault detection problem

Introduction	Problem formulation	Filter design	Example 0000000	Conclusion
Backgrounds				

- A common fault detection technique is to calculate a residual signal.
- $\bullet\,$ In this study, we consider the model based techniques, and a focus on \mathcal{H}_∞ fault detection problem
- For some problems, when fault frequency range is known (low frequencies, offsets...), the fault detection problem can be transformed into fault estimation problem.

Introduction	Problem formulation	Filter design	Example 0000000	Conclusion
Backgrounds				

- A common fault detection technique is to calculate a residual signal.
- $\bullet\,$ In this study, we consider the model based techniques, and a focus on \mathcal{H}_∞ fault detection problem
- For some problems, when fault frequency range is known (low frequencies, offsets...), the fault detection problem can be transformed into fault estimation problem.
- Switched uncertain approach may offer an interesting framework to model non-linear plants with parameters variation
- Working in the switched uncertain system framework can be used for the FD problem in lateral vehicle control

Introduction ○○○●	Problem formulation	Filter design	Example 0000000	Conclusion
Multi-objective de	sign			

- (a) perturbation (and unknown inputs, noises) rejection,
- (b) sensitivity toward faults,
- (c) and robustness toward uncertainties
- (d) correct time response for fault detection/estimation.

Introduction ○○○●	Problem formulation	Filter design	Example 0000000	Conclusion		
Multi-objective de	Multi-objective design					

- (a) perturbation (and unknown inputs, noises) rejection,
- (b) sensitivity toward faults,
- (c) and robustness toward uncertainties
- (d) correct time response for fault detection/estimation.

In our approach, a discrete time fault detection and estimation filter design is developed. The steps of the design are as follows:

• Express an \mathcal{H}_∞ performance, useful to ensure the residual robustness to unknown inputs for switched systems.

Introduction ○○○●	Problem formulation	Filter design	Example 00000000	Conclusion		
Multi-objective de	Multi-objective design					

- (a) perturbation (and unknown inputs, noises) rejection,
- (b) sensitivity toward faults,
- (c) and robustness toward uncertainties
- (d) correct time response for fault detection/estimation.

In our approach, a discrete time fault detection and estimation filter design is developed. The steps of the design are as follows:

- Express an \mathcal{H}_∞ performance, useful to ensure the residual robustness to unknown inputs for switched systems.
- Formulate the problem into Bilinear Matrix Inequalities (BMI), then linearization using projection lemma, while introducing several degrees of freedom.

Introduction ○○○●	Problem formulation	Filter design	Example 0000000	Conclusion		
Multi-objective de	Multi-objective design					

- (a) perturbation (and unknown inputs, noises) rejection,
- (b) sensitivity toward faults,
- (c) and robustness toward uncertainties
- (d) correct time response for fault detection/estimation.

In our approach, a discrete time fault detection and estimation filter design is developed. The steps of the design are as follows:

- Express an \mathcal{H}_∞ performance, useful to ensure the residual robustness to unknown inputs for switched systems.
- Formulate the problem into Bilinear Matrix Inequalities (BMI), then linearization using projection lemma, while introducing several degrees of freedom.
- Extend the proposed method to consider the uncertainties in the system.

Introduction ○○○●	Problem formulation	Filter design	Example 0000000	Conclusion		
Multi-objective de	Multi-objective design					

- (a) perturbation (and unknown inputs, noises) rejection,
- (b) sensitivity toward faults,
- (c) and robustness toward uncertainties
- (d) correct time response for fault detection/estimation.

In our approach, a discrete time fault detection and estimation filter design is developed. The steps of the design are as follows:

- Express an \mathcal{H}_∞ performance, useful to ensure the residual robustness to unknown inputs for switched systems.
- Formulate the problem into Bilinear Matrix Inequalities (BMI), then linearization using projection lemma, while introducing several degrees of freedom.
- Extend the proposed method to consider the uncertainties in the system.
- Finally, add loop shaping via weighting filters, useful to tune the transient response and steady state response, and enhance the overall fault detection.

Introduction	Problem formulation	Filter design	Example	Conclusion

Problem formulation

0000 0000000 0000000 0000000

A state space representation of switched linear time invariant system is:

$$\begin{cases} x_{k+1} = A_{\alpha(k)}x_k + E_{d,\alpha(k)}d_k + E_{f,\alpha(k)}f_k \\ y_k = C_{\alpha(k)}x_k + F_{d,\alpha(k)}d_k + F_{f,\alpha(k)}f_k \end{cases}$$
(1)

- $x \in \mathbb{R}^n$ is the state vector,
- $y \in \mathbb{R}^{p}$ is the measurement output vector,
- α(k) is the switching signal

- $d \in \mathbb{R}^{n_d}$ is the disturbance vector,
- $f \in \mathbb{R}^{n_f}$ is the vector of faults to be detected,

Introduction 0000	Problem formulation ●○○○	Filter design	Example 0000000	Conclusion			
A linear swit	A linear switched system						
A state	space representation of s	witched linear time invaria	nt system is:				

$$\begin{cases} x_{k+1} = A_{\alpha(k)}x_k + E_{d,\alpha(k)}d_k + E_{f,\alpha(k)}f_k \\ y_k = C_{\alpha(k)}x_k + F_{d,\alpha(k)}d_k + F_{f,\alpha(k)}f_k \end{cases}$$
(1)

- $x \in \mathbb{R}^n$ is the state vector,
- $y \in \mathbb{R}^p$ is the measurement output vector,
- *α*(*k*) is the switching signal

- $d \in \mathbb{R}^{n_d}$ is the disturbance vector,
- *f* ∈ ℝ^{n_f} is the vector of faults to be detected,

Assumption 1

The switching signal is assumed unknown a priori but its value is real-time available.

Introduction 0000	Problem formulation ●OOO	Filter design	Example 0000000	Conclusion
A linear switched	system			

A state space representation of switched linear time invariant system is:

$$\begin{cases} x_{k+1} = A_{\alpha(k)}x_k + E_{d,\alpha(k)}d_k + E_{f,\alpha(k)}f_k \\ y_k = C_{\alpha(k)}x_k + F_{d,\alpha(k)}d_k + F_{f,\alpha(k)}f_k \end{cases}$$
(1)

- $x \in \mathbb{R}^n$ is the state vector,
- $y \in \mathbb{R}^p$ is the measurement output vector,
- *α*(*k*) is the switching signal

- $d \in \mathbb{R}^{n_d}$ is the disturbance vector,
- *f* ∈ ℝ^{n_f} is the vector of faults to be detected,

Assumption 1

The switching signal is assumed unknown a priori but its value is real-time available. It takes values in the finite defined by $\alpha(k) : [0, \infty) \rightarrow \mathbb{N} = \{1, 2, .., N\}$

Introduction 0000	Problem formulation ●○○○	Filter design	Example 0000000	Conclusion
A linear swit	ched system			
A state	space representation of s	witched linear time invaria	nt system is:	

$$\begin{cases} x_{k+1} = A_{\alpha(k)}x_k + E_{d,\alpha(k)}d_k + E_{f,\alpha(k)}f_k \\ y_k = C_{\alpha(k)}x_k + F_{d,\alpha(k)}d_k + F_{f,\alpha(k)}f_k \end{cases}$$
(1)

- $x \in \mathbb{R}^n$ is the state vector,
- $y \in \mathbb{R}^{p}$ is the measurement output vector,
- *α*(*k*) is the switching signal

- $d \in \mathbb{R}^{n_d}$ is the disturbance vector,
- *f* ∈ ℝ^{n_f} is the vector of faults to be detected,

Assumption 1

The switching signal is assumed unknown a priori but its value is real-time available. It takes values in the finite defined by $\alpha(k) : [0, \infty) \to \mathbb{N} = \{1, 2, .., N\}$

Assumption 2

The pairs (A_{α}, C_{α}) are assumed observable, or without loss of generality are detectable. It is a standard assumption for all fault detection problems.

Introduction 0000	Problem formulation ●○○○	Filter design	Example 0000000	Conclusion
A linear swit	ched system			
A state	space representation of s	witched linear time invaria	nt system is:	

$$\begin{cases} x_{k+1} = A_{\alpha(k)}x_k + E_{d,\alpha(k)}d_k + E_{f,\alpha(k)}f_k \\ y_k = C_{\alpha(k)}x_k + F_{d,\alpha(k)}d_k + F_{f,\alpha(k)}f_k \end{cases}$$
(1)

- $x \in \mathbb{R}^n$ is the state vector,
- $y \in \mathbb{R}^{p}$ is the measurement output vector,
- *α*(*k*) is the switching signal

- $d \in \mathbb{R}^{n_d}$ is the disturbance vector,
- *f* ∈ ℝ^{n_f} is the vector of faults to be detected,

Assumption 1

The switching signal is assumed unknown a priori but its value is real-time available. It takes values in the finite defined by $\alpha(k) : [0, \infty) \to \mathbb{N} = \{1, 2, .., N\}$

Assumption 2

The pairs (A_{α}, C_{α}) are assumed observable, or without loss of generality are detectable. It is a standard assumption for all fault detection problems.

Notation

When $\alpha(k) = i$, it means that the *i*th subsystem is activated. Moreover, at the switching time $k : i = \alpha(k) \neq \alpha(k+1) = j$.

A class of un	certain switched system	n		
	0000			
Introduction	Problem formulation	Filter design	Example	Conclusion

$$\begin{cases} x_{k+1} = \bar{A}_{\alpha(k)}x_k + E_{d,\alpha(k)}d_k + E_{f,\alpha(k)}f_k \\ y_k = C_{\alpha(k)}x_k + F_{d,\alpha(k)}d_k + F_{f,\alpha(k)}f_k \end{cases}$$
(2)

Introduction	Problem formulation	Filter design	Example 00000000	Conclusion
A class of un	certain switched syster	n		

$$\begin{cases} x_{k+1} = \bar{A}_{\alpha(k)}x_k + E_{d,\alpha(k)}d_k + E_{f,\alpha(k)}f_k \\ y_k = C_{\alpha(k)}x_k + F_{d,\alpha(k)}d_k + F_{f,\alpha(k)}f_k \end{cases}$$
(2)

In this study, an additive uncertainties form is considered:

$$\bar{A}_{\alpha(k)} = A_{\alpha(k)} + H_{A,\alpha(k)} \Delta_{A,\alpha(k)} N_{A,\alpha(k)}$$
(3)

with $H_{A,\alpha(k)} \in \mathbb{R}^{n \times n_h}$ and $N_{A,\alpha(k)} \in \mathbb{R}^{n \times n_a}$

Introduction 0000	Problem formulation ○●○○	Filter design	Example 0000000	Conclusion
A class of uncerta	ain switched system			

$$\begin{cases} x_{k+1} = \bar{A}_{\alpha(k)}x_k + E_{d,\alpha(k)}d_k + E_{f,\alpha(k)}f_k \\ y_k = C_{\alpha(k)}x_k + F_{d,\alpha(k)}d_k + F_{f,\alpha(k)}f_k \end{cases}$$
(2)

In this study, an additive uncertainties form is considered:

$$\bar{A}_{\alpha(k)} = A_{\alpha(k)} + H_{A,\alpha(k)} \Delta_{A,\alpha(k)} N_{A,\alpha(k)}$$
(3)

with $H_{A,\alpha(k)} \in \mathbb{R}^{n \times n_h}$ and $N_{A,\alpha(k)} \in \mathbb{R}^{n \times n_a}$

Assumption 3

The system (2) is assumed stable, or without loss of generality is stabilizable (in case of joint fault detection and control).

Introduction 0000	Problem formulation	Filter design	Example 0000000	Conclusion
A class of uncertain switched system				

$$\begin{cases} x_{k+1} = \bar{A}_{\alpha(k)}x_k + E_{d,\alpha(k)}d_k + E_{f,\alpha(k)}f_k \\ y_k = C_{\alpha(k)}x_k + F_{d,\alpha(k)}d_k + F_{f,\alpha(k)}f_k \end{cases}$$
(2)

In this study, an additive uncertainties form is considered:

$$\bar{A}_{\alpha(k)} = A_{\alpha(k)} + H_{A,\alpha(k)} \Delta_{A,\alpha(k)} N_{A,\alpha(k)}$$
(3)

with $H_{A,\alpha(k)} \in \mathbb{R}^{n \times n_h}$ and $N_{A,\alpha(k)} \in \mathbb{R}^{n \times n_a}$

Assumption 3

The system (2) is assumed stable, or without loss of generality is stabilizable (in case of joint fault detection and control).

Assumption 4

The state uncertainty matrix $\Delta_{A,\alpha}$ is assumed bounded:

$$\Delta_{A,\alpha}^T \Delta_{A,\alpha} \leq I$$

Introduction	Problem formulation	Filter design	Example 0000000	Conclusion
Problem formulat	ion			

We propose to design a switched fault estimation filter $K_{f,i}(q^{-1})$ with the following realization:

$$\begin{cases} x_{k+1}^{K} = A_{i}^{K} x_{k}^{K} + B_{i}^{K} y_{k} \\ \hat{f}_{k} = C_{i}^{K} x_{k}^{K} + D_{i}^{K} y_{k} \end{cases}$$
(4)

where $x^{K} \in \mathbb{R}_{k}^{n}$ is the filter's state vector and $\hat{f} \in \mathbb{R}^{n_{f}}$ is the vector of the estimated faults.

Figure: Fault estimation schemes

Introduction	Problem formulation	Filter design	Example 0000000	Conclusion
Problem formulati	ion			

We propose to design a switched fault estimation filter $K_{f,i}(q^{-1})$ with the following realization:

$$\begin{cases} x_{k+1}^{K} = A_{i}^{K} x_{k}^{K} + B_{i}^{K} y_{k} \\ \hat{f}_{k} = C_{i}^{K} x_{k}^{K} + D_{i}^{K} y_{k} \end{cases}$$
(4)

where $x^{K} \in \mathbb{R}^{n}_{k}$ is the filter's state vector and $\hat{f} \in \mathbb{R}^{n_{f}}$ is the vector of the estimated faults.

Define $z_k = f_k - \hat{f}_k$ and $x_k^a = \begin{bmatrix} x_k^T & x_k^{KT} \end{bmatrix}^T$ then:

$$\begin{cases} x_{k+1}^{a} = A_{i}^{a} x_{k+1}^{a} + E_{i}^{a} w_{k} \\ Z_{k} = C_{i}^{a} x_{k}^{a} + F_{i}^{a} w_{k} \end{cases}$$
(5)

Introduction	Problem formulation	Filter design	Example 0000000	Conclusion
Problem formulati	on			

We propose to design a switched fault estimation filter $K_{f,i}(q^{-1})$ with the following realization:

$$\begin{cases} x_{k+1}^{K} = A_{i}^{K} x_{k}^{K} + B_{i}^{K} y_{k} \\ \hat{f}_{k} = C_{i}^{K} x_{k}^{K} + D_{i}^{K} y_{k} \end{cases}$$

$$\tag{4}$$

where $x^{K} \in \mathbb{R}^{n}_{k}$ is the filter's state vector and $\hat{f} \in \mathbb{R}^{n_{f}}$ is the vector of the estimated faults.

Define $z_k = f_k - \hat{f}_k$ and $x_k^a = \begin{bmatrix} x_k^T & x_k^{KT} \end{bmatrix}^T$ then:

$$\begin{cases} x_{k+1}^{a} = A_{i}^{a} x_{k+1}^{a} + E_{i}^{a} w_{k} \\ z_{k} = C_{i}^{a} x_{k}^{a} + F_{i}^{a} w_{k} \end{cases}$$
(5)

Where
$$A_i^a = \begin{bmatrix} A_i & 0 \\ B_i^K C_i & A_i^K \end{bmatrix}$$
, $E_i^a = \begin{bmatrix} E_{w,i} \\ B_i^K F_{w,i} \end{bmatrix}$, $C_i^a = \begin{bmatrix} D_i^K C_i + \tilde{C}_i & C_i^K \end{bmatrix}$,
 $F_i^a = D_i^K F_{w,i} + \tilde{F}_i$, $\tilde{C}_i = \begin{bmatrix} 0 \end{bmatrix}$, and $\tilde{F}_i = \begin{bmatrix} 0 & -I \end{bmatrix}$,

Introduction	Problem formulation	Filter design	Example 0000000	Conclusion
Problem formulati	on			

$$T_{zw}(q^{-1}) = C_i^a (q^{-1}I - A_i^a)^{-1} E_i^a + F_i^a$$
(6)

Introduction	Problem formulation	Filter design	Example	Conclusion
	0000			
Problem form	ulation			

$$T_{zw}(q^{-1}) = C_i^a (q^{-1}I - A_i^a)^{-1} E_i^a + F_i^a$$
(6)

The \mathcal{L}_2 -gain from the estimation error z_k to the vector w_k must be bounded by positive scalar γ_i i.e.

$$\boldsymbol{z}_{k}^{T}\boldsymbol{z}_{k} < \gamma_{i}\boldsymbol{w}_{k}^{T}\boldsymbol{w}_{k} \tag{7}$$

Introduction	Problem formulation	Filter design	Example	Conclusion
	0000			
Problem formul	ation			

$$T_{zw}(q^{-1}) = C_i^a (q^{-1}I - A_i^a)^{-1} E_i^a + F_i^a$$
(6)

The \mathcal{L}_2 -gain from the estimation error z_k to the vector w_k must be bounded by positive scalar γ_i i.e.

$$\boldsymbol{z}_{k}^{T}\boldsymbol{z}_{k} < \gamma_{i}\boldsymbol{w}_{k}^{T}\boldsymbol{w}_{k} \tag{7}$$

That is equivalent to the following inequality (H_{∞} norm):

$$\left\| \mathcal{T}_{zw} \right\|_{\infty} < \gamma_i \tag{8}$$

With γ_i is positive scalars.

Introduction	Problem formulation	Filter design	Example	Conclusion
	0000			
Problem formul	ation			

$$T_{zw}(q^{-1}) = C_i^a (q^{-1}I - A_i^a)^{-1} E_i^a + F_i^a$$
(6)

The \mathcal{L}_2 -gain from the estimation error z_k to the vector w_k must be bounded by positive scalar γ_i i.e.

$$\boldsymbol{z}_{k}^{T}\boldsymbol{z}_{k} < \gamma_{i}\boldsymbol{w}_{k}^{T}\boldsymbol{w}_{k} \tag{7}$$

That is equivalent to the following inequality (H_{∞} norm):

$$\|T_{zw}\|_{\infty} < \gamma_i \tag{8}$$

With γ_i is positive scalars.

The problem is formulated as following: Find a discrete filter $K(q^{-1})$ such that the augmented system is stable and the equation (8) is satisfied.

Introduction	Problem formulation	Filter design

Filter design

Farhat, Koenig(University Grenoble-Alpes)

RFDF for Uncertain Switched Systems

Gdr MACS S3, ENSAM Paris, 04/02/16 11/33

Introduction	Problem formulation	Filter design	Example	Conclusion
		•••••		
\mathcal{H}_{∞} for switched	system			

Theorem (Bounded real lemma for switched system)

For a given switched linear system under arbitrary switching, jf there exist matrices P_i and a positive definite matrices $P_i \forall i, j \in \{1..N\}$ such that:

$$\begin{bmatrix} -P_{j}^{-1} & A_{i}^{a} & E_{i}^{a} & 0\\ A_{i}^{aT} & -P_{i} & 0 & C_{i}^{aT}\\ E_{i}^{aT} & 0 & -\gamma_{i}^{2}I & F_{i}^{aT}\\ 0 & C_{i}^{a} & F_{i}^{a} & -I \end{bmatrix} < 0$$
(9)

Then the switched discrete time fault estimation filter (SDTFEF) can be designed where the condition (8) is guaranteed.
Introduction	Problem formulation	Filter design	Example	Conclusion
		••••••		
\mathcal{H}_∞ for switched	system			

Theorem (Bounded real lemma for switched system)

For a given switched linear system under arbitrary switching, if there exist matrices P_i and a positive definite matrices $P_i \forall i, j \in \{1..N\}$ such that:

$$\begin{bmatrix} -P_{j}^{-1} & A_{i}^{a} & E_{i}^{a} & 0\\ A_{i}^{aT} & -P_{i} & 0 & C_{i}^{aT}\\ E_{i}^{aT} & 0 & -\gamma_{i}^{2}I & F_{i}^{aT}\\ 0 & C_{i}^{a} & F_{i}^{a} & -I \end{bmatrix} < 0$$
(9)

Then the switched discrete time fault estimation filter (SDTFEF) can be designed where the condition (8) is guaranteed.

Proof

Using the switched Lyapunov function $V_k = x_k^{aT} P_k x_k^a > 0$ that must be decreasing for all k, solve $x_{k+1}^a P_{k+1} x_{k+1}^a - x_k^{aT} P_k x_k^a + z_k^T z_k - \gamma_i^2 w_k^T w_k < 0$. After some calculation and with Shur complement, (9) is easily obtained.

Introduction	Problem formulation	Filter design	Example	Conclusion
		•••••		
\mathcal{H}_∞ for switched system				

Theorem (Bounded real lemma for switched system)

For a given switched linear system under arbitrary switching, if there exist matrices P_i and a positive definite matrices $P_i \forall i, j \in \{1..N\}$ such that:

$$\begin{bmatrix} -P_{j}^{-1} & A_{i}^{a} & E_{i}^{a} & 0\\ A_{i}^{aT} & -P_{i} & 0 & C_{i}^{aT}\\ E_{i}^{aT} & 0 & -\gamma_{i}^{2}I & F_{i}^{aT}\\ 0 & C_{i}^{a} & F_{i}^{a} & -I \end{bmatrix} < 0$$
(9)

Then the switched discrete time fault estimation filter (SDTFEF) can be designed where the condition (8) is guaranteed.

Proof

Using the switched Lyapunov function $V_k = x_k^{aT} P_k x_k^a > 0$ that must be decreasing for all k, solve $x_{k+1}^a P_{k+1} x_{k+1}^a - x_k^{aT} P_k x_k^a + z_k^T z_k - \gamma_i^2 w_k^T w_k < 0$. After some calculation and with Shur complement, (9) is easily obtained.

Non linearities

This inequation is bilinear in P_i and P_j . Linearization is needed.

Introduction	Problem formulation	Filter design	Example	Conclusion	
		0000000000			
On the structure of <i>P_i</i> and BMI linearization					

On the struct	ure of <i>P</i> , and BMI linear	rization	0000000	
Introduction	Problem formulation	Filter design	Example	Conclusion

• Consider a commune Lyapunov function instead of switched one, i.e.: $P_i = P_j$... $\forall i, j \in \{1..N\}$. This method is very conservative.

On the atmusture of	D and BMI linearizatio	-		
Introduction F	Problem formulation	Filter design	Example 00000000	Conclusion

• Consider a commune Lyapunov function instead of switched one, i.e.: $P_i = P_j$... $\forall i, j \in \{1..N\}$. This method is very conservative.

(2) Impose some structure on *P*, for example: $P_i = \begin{bmatrix} P_{1,i} & 0 \\ 0 & P_{2,i} \end{bmatrix}$

On the structure of P and PMI linearization						
0000	0000		0000000	Conclusion		
		Eller de les		Conclusion		

• Consider a commune Lyapunov function instead of switched one, i.e.: $P_i = P_j$... $\forall i, j \in \{1..N\}$. This method is very conservative.

Impose some structure on *P*, for example: $P_i = \begin{bmatrix} P_{1,i} & 0 \\ 0 & P_{2,i} \end{bmatrix}$

In our study, no assumption on P_i is made, we simply denote:First, P_i is defined as follows:

$$P_{i} = \begin{bmatrix} S_{i} & N_{i} \\ N_{i}^{T} & U_{i} \end{bmatrix} = \begin{bmatrix} R_{i} & M_{i} \\ M_{i}^{T} & V_{i} \end{bmatrix}^{-1} > 0$$
(10)

On the structure of P and PMI linearization						
0000	0000		0000000	Conclusion		
		Eller de les		Conclusion		

• Consider a commune Lyapunov function instead of switched one, i.e.: $P_i = P_j$... $\forall i, j \in \{1..N\}$. This method is very conservative.

Impose some structure on *P*, for example: $P_i = \begin{bmatrix} P_{1,i} & 0 \\ 0 & P_{2,i} \end{bmatrix}$

In our study, no assumption on P_i is made, we simply denote:First, P_i is defined as follows:

$$P_{i} = \begin{bmatrix} S_{i} & N_{i} \\ N_{i}^{T} & U_{i} \end{bmatrix} = \begin{bmatrix} R_{i} & M_{i} \\ M_{i}^{T} & V_{i} \end{bmatrix}^{-1} > 0$$
(10)

		00000000000				
Introduction	Problem formulation	Filter design	Example	Conclusion		

• Consider a commune Lyapunov function instead of switched one, i.e.: $P_i = P_j$... $\forall i, j \in \{1..N\}$. This method is very conservative.

Impose some structure on *P*, for example: $P_i = \begin{bmatrix} P_{1,i} & 0 \\ 0 & P_{2,i} \end{bmatrix}$

In our study, no assumption on P_i is made, we simply denote:First, P_i is defined as follows:

$$P_{i} = \begin{bmatrix} S_{i} & N_{i} \\ N_{i}^{T} & U_{i} \end{bmatrix} = \begin{bmatrix} R_{i} & M_{i} \\ M_{i}^{T} & V_{i} \end{bmatrix}^{-1} > 0$$
(10)

On another hand, there are two methods to linearize the BMI problem: Two approches:

		00000000000				
Introduction	Problem formulation	Filter design	Example	Conclusion		

• Consider a commune Lyapunov function instead of switched one, i.e.: $P_i = P_j$... $\forall i, j \in \{1..N\}$. This method is very conservative.

Impose some structure on *P*, for example: $P_i = \begin{bmatrix} P_{1,i} & 0 \\ 0 & P_{2,i} \end{bmatrix}$

In our study, no assumption on P_i is made, we simply denote:First, P_i is defined as follows:

$$P_{i} = \begin{bmatrix} S_{i} & N_{i} \\ N_{i}^{T} & U_{i} \end{bmatrix} = \begin{bmatrix} R_{i} & M_{i} \\ M_{i}^{T} & V_{i} \end{bmatrix}^{-1} > 0$$
(10)

On another hand, there are two methods to linearize the BMI problem: Two approches:

 Multiply the BMI by some full rank matrices with zeros, and then proceed to a change of variable

		00000000000				
Introduction	Problem formulation	Filter design	Example	Conclusion		

• Consider a commune Lyapunov function instead of switched one, i.e.: $P_i = P_j$... $\forall i, j \in \{1..N\}$. This method is very conservative.

Impose some structure on *P*, for example: $P_i = \begin{bmatrix} P_{1,i} & 0 \\ 0 & P_{2,i} \end{bmatrix}$

In our study, no assumption on P_i is made, we simply denote:First, P_i is defined as follows:

$$P_{i} = \begin{bmatrix} S_{i} & N_{i} \\ N_{i}^{T} & U_{i} \end{bmatrix} = \begin{bmatrix} R_{i} & M_{i} \\ M_{i}^{T} & V_{i} \end{bmatrix}^{-1} > 0$$
(10)

On another hand, there are two methods to linearize the BMI problem: Two approches:

- Multiply the BMI by some full rank matrices with zeros, and then proceed to a change of variable
- **②** Use the projection lemma to eliminate the unknown terms K_i , and then solve two sets of LMI, ones after another. This is explained in the next slides

Introduction	Problem formulation	Filter design OO●OOOOOOOO	Example 0000000	Conclusion
BMI linearization				

Lemma (Projection lemma)

Given a symmetric matrix Ψ and the matrices N, θ and N with appropriate dimensions : $\Phi+M^T\theta^TN+N^T\theta M<0$

Denote by W_X any matrices whose columns form bases of the null spaces of X. The above equation is solvable for θ if and only if $W_M^T \Psi W_M < 0$ and $W_N^T \Psi W_N < 0$

Introduction	Problem formulation	Filter design OO●OOOOOOOO	Example 0000000	Conclusion
BMI linearization				

Lemma (Projection lemma)

Given a symmetric matrix Ψ and the matrices N, θ and N with appropriate dimensions : $\Phi+M^T\theta^TN+N^T\theta M<0$

Denote by W_X any matrices whose columns form bases of the null spaces of X. The above equation is solvable for θ if and only if $W_M^T \Psi W_M < 0$ and $W_N^T \Psi W_N < 0$

Re-write (9) as:

$$\underbrace{\begin{bmatrix} -P_{j}^{-1} & A_{i}^{0} & E_{i}^{0} & 0\\ A_{i}^{0T} & -P_{i} & 0 & C_{i}^{0T}\\ E_{i}^{0T} & 0 & -\gamma_{i}^{2}I & F_{i}^{0T}\\ 0 & C_{i}^{0} & F_{i}^{0} & -I \end{bmatrix}}_{\Phi_{i}} + \underbrace{\begin{bmatrix} \mathcal{B}_{i}\\ 0\\ 0\\ \mathcal{D}_{i} \end{bmatrix}}_{\mathcal{M}_{i}^{T}} \mathcal{K}_{i} \underbrace{\begin{bmatrix} 0 & C_{i} & \mathcal{F}_{i} & 0\\ \end{array} + \begin{bmatrix} \star \end{bmatrix} < 0 \quad (11)$$

Introduction	Problem formulation	Filter design OO●OOOOOOOO	Example 0000000	Conclusion
BMI linearization				

Lemma (Projection lemma)

Given a symmetric matrix Ψ and the matrices N, θ and N with appropriate dimensions : $\Phi+M^T\theta^TN+N^T\theta M<0$

Denote by W_X any matrices whose columns form bases of the null spaces of X. The above equation is solvable for θ if and only if $W_M^T \Psi W_M < 0$ and $W_N^T \Psi W_N < 0$

Re-write (9) as:

$$\underbrace{\begin{bmatrix} -P_{j}^{-1} & A_{i}^{0} & E_{i}^{0} & 0\\ A_{i}^{0T} & -P_{i} & 0 & C_{i}^{0T}\\ E_{i}^{0T} & 0 & -\gamma_{i}^{2}I & F_{i}^{0T}\\ 0 & C_{i}^{0} & F_{i}^{0} & -I \end{bmatrix}}_{\Phi_{j}} + \underbrace{\begin{bmatrix} \mathcal{B}_{i}\\ 0\\ 0\\ \mathcal{D}_{i} \end{bmatrix}}_{\mathcal{M}_{i}^{T}} \mathcal{K}_{i} \underbrace{\begin{bmatrix} 0 & C_{i} & \mathcal{F}_{i} & 0\\ \end{array} + \begin{bmatrix} \star \end{bmatrix} < 0 \quad (11)$$

where:

$$\begin{aligned} \mathcal{A}_{i}^{0} &= \begin{bmatrix} A_{i} & 0\\ 0 & 0 \end{bmatrix}, \ \mathcal{E}_{i}^{0} &= \begin{bmatrix} E_{i}\\ 0 \end{bmatrix}, \ \mathcal{C}_{i}^{0} &= \begin{bmatrix} \tilde{\mathcal{C}}_{i} & 0 \end{bmatrix}, \ \mathcal{F}_{i}^{0} &= \begin{bmatrix} \tilde{\mathcal{F}}_{i} \end{bmatrix}, \\ \mathcal{B}_{i} &= \begin{bmatrix} 0 & 0\\ 0 & I \end{bmatrix}, \ \mathcal{D}_{i} &= \begin{bmatrix} I & 0 \end{bmatrix}, \ \mathcal{C}_{i} &= \begin{bmatrix} C_{i} & 0\\ 0 & I \end{bmatrix}, \ \mathcal{F}_{i} &= \begin{bmatrix} F_{i}\\ 0 \end{bmatrix} \end{aligned} \qquad \text{and} \ \mathcal{K}_{i} &= \begin{bmatrix} D_{i}^{K} & C_{i}^{K}\\ B_{i}^{K} & A_{i}^{K} \end{bmatrix}$$

Introduction	Problem formulation	Filter design	Example 0000000	Conclusion
Eliminate the \mathcal{K} -term				

First apply the projection lemma on (11), it yields to the following inequalities:

$$W_{\mathcal{M}_i}^T \Phi_i W_{\mathcal{M}_i} < 0 \tag{12a}$$

$$W_{\mathcal{N}_i}^T \Phi_i W_{\mathcal{N}_i} < 0 \tag{12b}$$

Introduction	Problem formulation	Filter design	Example 0000000	Conclusion
Eliminate the \mathcal{K} -te	erm			

First apply the projection lemma on (11), it yields to the following inequalities:

$$W_{\mathcal{M}_i}^T \Phi_i W_{\mathcal{M}_i} < 0 \tag{12a}$$

$$W_{\mathcal{N}_i}^T \Phi_i W_{\mathcal{N}_i} < 0 \tag{12b}$$

Then compute $W_{\mathcal{M}_i}$ and $W_{\mathcal{N}_i}$, and the definition of P_i the following theorem is deduced

Theorem (Suboptimal discrete-time fault filter)

The suboptimal H_{∞} fault estimation problem is solvable if and only if there exist positive definite matrices $R_{i/i}$ and $S_{i/i} \forall i, j \in \{1..N\}$ such that:

$$\begin{bmatrix} -R_{j} + A_{i}R_{i}A_{i}^{T} & E_{i} \\ E_{i}^{T} & -\gamma_{i}^{2}I \end{bmatrix} < 0 \quad (13a)$$

$$\begin{bmatrix} W_{CF_{i}}^{T} & 0 \\ 0 & I_{n_{i}} \end{bmatrix} \begin{bmatrix} -S_{i} + A_{i}^{T}S_{j}A_{i} & A_{i}^{T}S_{j}E_{i} & \tilde{C}_{i}^{T} \\ E_{i}^{T}S_{j}A_{i} & -\gamma_{i}^{2}I + E_{i}^{T}S_{j}E_{i} & \tilde{F}_{i}^{T} \\ \tilde{C}_{i}^{T} & \tilde{F}_{i} & -I \end{bmatrix} \begin{bmatrix} W_{CF_{i}} & 0 \\ 0 & I_{n_{i}} \end{bmatrix} < 0 \quad (13b)$$

Where W_{CF_i} are basis of null spaces of $\begin{bmatrix} C_i & F_i \end{bmatrix}$

Introduction	Problem formulation	Filter design	Example 0000000	Conclusion
Eliminate the \mathcal{K} -te	erm			

First apply the projection lemma on (11), it yields to the following inequalities:

$$W_{\mathcal{M}_i}^T \Phi_i W_{\mathcal{M}_i} < 0 \tag{12a}$$

$$W_{\mathcal{N}_i}^T \Phi_i W_{\mathcal{N}_i} < 0 \tag{12b}$$

Then compute $W_{\mathcal{M}_i}$ and $W_{\mathcal{N}_i}$, and the definition of P_i the following theorem is deduced

Theorem (Suboptimal discrete-time fault filter)

The suboptimal H_{∞} fault estimation problem is solvable if and only if there exist positive definite matrices $R_{i/i}$ and $S_{i/i} \forall i, j \in \{1..N\}$ such that:

$$\begin{bmatrix} -R_{j} + A_{i}R_{i}A_{i}^{T} & E_{i} \\ E_{i}^{T} & -\gamma_{i}^{2}I \end{bmatrix} < 0 \quad (13a)$$

$$\begin{bmatrix} W_{CF_{i}}^{T} & 0 \\ 0 & I_{n_{i}} \end{bmatrix} \begin{bmatrix} -S_{i} + A_{i}^{T}S_{j}A_{i} & A_{i}^{T}S_{j}E_{i} & \tilde{C}_{i}^{T} \\ E_{i}^{T}S_{j}A_{i} & -\gamma_{i}^{2}I + E_{i}^{T}S_{j}E_{i} & \tilde{F}_{i}^{T} \\ \tilde{C}_{i}^{T} & \tilde{F}_{i} & -I \end{bmatrix} \begin{bmatrix} W_{CF_{i}} & 0 \\ 0 & I_{n_{i}} \end{bmatrix} < 0 \quad (13b)$$

Where W_{CF_i} are basis of null spaces of $\begin{bmatrix} C_i & F_i \end{bmatrix}$

Controller red	construction: find P (na	art 1)		
Introduction	Problem formulation	Filter design	Example	Conclusion

$$P_{i} = \begin{bmatrix} S_{i} & N_{i} \\ N_{i}^{T} & U_{i} \end{bmatrix} = \begin{bmatrix} R_{i} & M_{i} \\ M_{i}^{T} & V_{i} \end{bmatrix}^{-1}$$
(14)

Controllor ro	construction, find D (no	unt 1)		
Introduction	Problem formulation	Filter design	Example	Conclusion

Recall P_i , defined as :

$$P_{i} = \begin{bmatrix} S_{i} & N_{i} \\ N_{i}^{T} & U_{i} \end{bmatrix} = \begin{bmatrix} R_{i} & M_{i} \\ M_{i}^{T} & V_{i} \end{bmatrix}^{-1}$$
(14)

 R_i , S_i are computed as solution for (13a), we need to find the other elements of P_i

Controller reconstruction: find P (part 1)				
		00000000000		
Introduction	Problem formulation	Filter design	Example	Conclusion

$$P_{i} = \begin{bmatrix} S_{i} & N_{i} \\ N_{i}^{T} & U_{i} \end{bmatrix} = \begin{bmatrix} R_{i} & M_{i} \\ M_{i}^{T} & V_{i} \end{bmatrix}^{-1}$$
(14)

 R_i , S_i are computed as solution for (13a), we need to find the other elements of P_i From $P_i P_i^{-1} = I$, we infer:

$$P_{i}\begin{bmatrix} R_{i} \\ M_{i}^{T} \end{bmatrix} = \begin{bmatrix} I \\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} S_{i} & N_{i} \\ N_{i}^{T} & U_{i} \end{bmatrix} \begin{bmatrix} R_{i} \\ M_{i}^{T} \end{bmatrix} = \begin{bmatrix} I \\ 0 \end{bmatrix}$$
(15)

Controller reconstruction: find P (part 1)				
		000000000000		
Introduction	Problem formulation	Filter design	Example	Conclusion

$$P_{i} = \begin{bmatrix} S_{i} & N_{i} \\ N_{i}^{T} & U_{i} \end{bmatrix} = \begin{bmatrix} R_{i} & M_{i} \\ M_{i}^{T} & V_{i} \end{bmatrix}^{-1}$$
(14)

 R_i , S_i are computed as solution for (13a), we need to find the other elements of P_i From $P_i P_i^{-1} = I$, we infer:

$$P_{i}\begin{bmatrix} R_{i} \\ M_{i}^{T} \end{bmatrix} = \begin{bmatrix} I \\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} S_{i} & N_{i} \\ N_{i}^{T} & U_{i} \end{bmatrix} \begin{bmatrix} R_{i} \\ M_{i}^{T} \end{bmatrix} = \begin{bmatrix} I \\ 0 \end{bmatrix}$$
(15)

From (15), the matrices M_i , N_i , U_i can be computed using:

$$S_i R_i + N_i M_i^T = I \tag{16a}$$

$$N_i^T R_i + U_i M_i^T = 0 \tag{16b}$$

Controller re	construction: find P (n	art 1)		
		000000000000		
Introduction	Problem formulation	Filter design	Example	Conclusion

$$P_{i} = \begin{bmatrix} S_{i} & N_{i} \\ N_{i}^{T} & U_{i} \end{bmatrix} = \begin{bmatrix} R_{i} & M_{i} \\ M_{i}^{T} & V_{i} \end{bmatrix}^{-1}$$
(14)

 R_i , S_i are computed as solution for (13a), we need to find the other elements of P_i From $P_i P_i^{-1} = I$, we infer:

$$P_{i}\begin{bmatrix}R_{i}\\M_{i}^{T}\end{bmatrix} = \begin{bmatrix}I\\0\end{bmatrix} \Leftrightarrow \begin{bmatrix}S_{i} & N_{i}\\N_{i}^{T} & U_{i}\end{bmatrix}\begin{bmatrix}R_{i}\\M_{i}^{T}\end{bmatrix} = \begin{bmatrix}I\\0\end{bmatrix}$$
(15)

From (15), the matrices M_i , N_i , U_i can be computed using:

$$S_i R_i + N_i M_i^T = I \tag{16a}$$

$$N_i^T R_i + U_i M_i^T = 0 \tag{16b}$$

Product of two unknown matrices!

Controller re	construction: find P (n	art 1)		
		000000000000		
Introduction	Problem formulation	Filter design	Example	Conclusion

$$P_{i} = \begin{bmatrix} S_{i} & N_{i} \\ N_{i}^{T} & U_{i} \end{bmatrix} = \begin{bmatrix} R_{i} & M_{i} \\ M_{i}^{T} & V_{i} \end{bmatrix}^{-1}$$
(14)

 R_i , S_i are computed as solution for (13a), we need to find the other elements of P_i From $P_i P_i^{-1} = I$, we infer:

$$P_{i}\begin{bmatrix}R_{i}\\M_{i}^{T}\end{bmatrix} = \begin{bmatrix}I\\0\end{bmatrix} \Leftrightarrow \begin{bmatrix}S_{i} & N_{i}\\N_{i}^{T} & U_{i}\end{bmatrix}\begin{bmatrix}R_{i}\\M_{i}^{T}\end{bmatrix} = \begin{bmatrix}I\\0\end{bmatrix}$$
(15)

From (15), the matrices M_i , N_i , U_i can be computed using:

$$S_i R_i + N_i M_i^T = I \tag{16a}$$

$$N_i^T R_i + U_i M_i^T = 0 \tag{16b}$$

Product of two unknown matrices! ⇒ Singular value decomposition

Introduction	Problem formulation	Filter design 00000●000000	Example 0000000	Conclusion
Controller re	construction: find P (pa	art 2)		

From (16a): denote $X_i = I - S_i R_i$, the singular value decomposition of X_i is:

$$X_i = \Sigma_i \Lambda_i \Gamma_i^T \tag{17}$$

where Σ_i is an unitary orthogonal matrix, Λ_i is a diagonal matrix , and Γ_i is the transpose of an unitary orthogonal matrix.

From (16a): denote $X_i = I - S_i R_i$, the singular value decomposition of X_i is:

$$X_i = \Sigma_i \Lambda_i \Gamma_i^T \tag{17}$$

where Σ_i is an unitary orthogonal matrix, Λ_i is a diagonal matrix , and Γ_i is the transpose of an unitary orthogonal matrix.

We introduce to (17) a non singular matrix G_i of appropriate dimensions,

$$X_i = \sum_i \Lambda_i \mathbf{G}_i \mathbf{G}_i^{-1} \Gamma_i^T \tag{18}$$

Introduction Problem formulation Filter design Conclusion Controller reconstruction: find P (part 2)

From (16a): denote $X_i = I - S_i R_i$, the singular value decomposition of X_i is:

$$X_i = \Sigma_i \Lambda_i \Gamma_i^T \tag{17}$$

where Σ_i is an unitary orthogonal matrix, Λ_i is a diagonal matrix, and Γ_i is the transpose of an unitary orthogonal matrix.

We introduce to (17) a non singular matrix G_i of appropriate dimensions,

$$X_i = \sum_i \Lambda_i G_i G_i^{-1} \Gamma_i^T$$
(18)

Then a solution of M_i and N_i (16a) is:

$$N_i = \sum_i \Lambda_i \mathbf{G}_i \tag{19a}$$

$$M_i^T = G_i^{-1} \Gamma_i^T \tag{19b}$$

$$U_i = M_i^{-1} R_i N_i \tag{19c}$$

 Introduction
 Problem formulation
 Filter design
 Example
 Conclusion

 0000
 0000
 00000
 00000000
 00000000

 Controller reconstruction: find P (part 2)
 Example
 Conclusion

From (16a): denote $X_i = I - S_i R_i$, the singular value decomposition of X_i is:

$$X_i = \Sigma_i \Lambda_i \Gamma_i^{\mathcal{T}} \tag{17}$$

where Σ_i is an unitary orthogonal matrix, Λ_i is a diagonal matrix , and Γ_i is the transpose of an unitary orthogonal matrix.

We introduce to (17) a non singular matrix G_i of appropriate dimensions,

$$X_i = \sum_i \Lambda_i G_i G_i^{-1} \Gamma_i^T$$
(18)

Then a solution of M_i and N_i (16a) is:

$$N_i = \Sigma_i \Lambda_i \frac{G_i}{G_i} \tag{19a}$$

$$M_i^T = G_i^{-1} \Gamma_i^T \tag{19b}$$

$$U_i = M_i^{-1} R_i N_i \tag{19c}$$

Remark 1: One degree of freedom

The choice of matrix G_i offers one degree of freedom of the filter design.

Farhat, Koenig(University Grenoble-Alpes)

RFDF for Uncertain Switched Systems

Gdr MACS S3, ENSAM Paris, 04/02/16 17/33

Introduction	Problem formulation	Filter design	Example
		00000000000	

Extension for uncertain switched LTI systems

Introduction	Problem formulation	Filter design	Example	Conclusion		
		0000000000000				
Robust fault estimation for switched uncertain system						

Lemma (Majoration lemma)

If $\Delta^T \Delta < Q_{\Delta}$, then for any $\alpha > 0$:

$$X^{T} \Delta Y + Y^{T} \Delta X \le \alpha X^{T} X + \frac{1}{\alpha} Y^{T} Q_{\Delta} Y$$
(20)

Introduction	Problem formulation	Filter design	Example	Conclusion				
		000000000000000000000000000000000000000						
Robust fault	Robust fault estimation for switched uncertain system							

Lemma (Majoration lemma)

If $\Delta^T \Delta < Q_{\Delta}$, then for any $\alpha > 0$:

$$X^{T} \Delta Y + Y^{T} \Delta X \le \alpha X^{T} X + \frac{1}{\alpha} Y^{T} Q_{\Delta} Y$$
⁽²⁰⁾

Theorem (Bounded real lemma for uncertain switched system)

For a given switched linear uncertain system under arbitrary switching, jf there exist matrices P_i and a positive definite matrices $P_i \forall i, j \in \{1..N\}$ such that:

$$\begin{bmatrix} -P_{j}^{-1} & A_{i}^{a} & E_{i}^{a} & 0 & H_{A_{i}}^{a} & 0 \\ A_{i}^{aT} & -P_{i} & 0 & C_{i}^{aT} & 0 & N_{A_{i}}^{aT} \\ E_{i}^{aT} & 0 & -\gamma_{i}^{2}I & F_{i}^{aT} & 0 & 0 \\ 0 & C_{i}^{a} & F_{i}^{a} & -I & 0 & 0 \\ H_{A_{i}}^{aT} & 0 & 0 & 0 & -\alpha_{i}I^{-1} & 0 \\ 0 & N_{A_{i}}^{a} & 0 & 0 & 0 & -\alpha_{i}I \end{bmatrix} < 0$$
(21)

Then a robust switched discrete time fault estimation filter (RSDTFEF) can be designed where the condition (8) is guaranteed.

Farhat, Koenig(University Grenoble-Alpes)

RFDF for Uncertain Switched Systems

Gdr MACS S3, ENSAM Paris, 04/02/16 19/33

Introduction	Problem formulation	Filter design ○○○○○○○●○○○	Example 0000000	Conclusion
Proof of previous theorem				

$$\begin{bmatrix} -P_j^{-1} & \bar{A}_i^a & E_i^a & 0\\ \bar{A}_i^{\bar{a}T} & -P_i & 0 & C_i^{aT}\\ E_i^{\bar{a}T} & 0 & -\gamma_i^2 I & F_i^{aT}\\ 0 & C_i^a & F_i^a & -I \end{bmatrix} < 0$$
 (22)

Introduction	Problem formulation	Filter design ○○○○○○○○●○○○	Example 00000000	Conclusion
Proof of previous	theorem			

$$\begin{bmatrix} -P_{j}^{-1} & \bar{A}_{i}^{a} & E_{i}^{a} & 0\\ \bar{A}_{i}^{aT} & -P_{i} & 0 & C_{i}^{aT}\\ E_{i}^{aT} & 0 & -\gamma_{i}^{2}I & F_{i}^{aT}\\ 0 & C_{i}^{a} & F_{i}^{a} & -I \end{bmatrix} < 0$$
(22)

With:
$$\bar{A}_i^a = \begin{bmatrix} A_i & 0\\ B_i^K C_i & A_i^K \end{bmatrix} = \begin{bmatrix} A_i + H_{A,i} \Delta_{A,i} N_{A,i} & 0\\ B_i^K C_i & A_i^K \end{bmatrix} = \begin{bmatrix} A_i & 0\\ B_i^K C_i & A_i^K \end{bmatrix} + H_{A,i}^a \Delta_{A,i} N_{A,i}^a,$$

where $H_{A,i}^a = \begin{bmatrix} H_{A,i}\\ 0 \end{bmatrix}$ and $N_{A,i}^a = \begin{bmatrix} N_{A,i} & 0 \end{bmatrix}$.

Introduction	Problem formulation	Filter design ○○○○○○○○●●○○○	Example 00000000	Conclusion
Proof of previous	theorem			

$$\begin{bmatrix} -P_{j}^{-1} & \bar{A}_{i}^{a} & E_{i}^{a} & 0\\ \bar{A}_{i}^{aT} & -P_{i} & 0 & C_{i}^{aT}\\ E_{i}^{aT} & 0 & -\gamma_{i}^{2}I & F_{i}^{aT}\\ 0 & C_{i}^{a} & F_{i}^{a} & -I \end{bmatrix} < 0$$
(22)

With:
$$\bar{A}_{i}^{a} = \begin{bmatrix} \bar{A}_{i} & 0\\ B_{i}^{K}C_{i} & A_{i}^{K} \end{bmatrix} = \begin{bmatrix} A_{i} + H_{A,i}\Delta_{A,i}N_{A,i} & 0\\ B_{i}^{K}C_{i} & A_{i}^{K} \end{bmatrix} = \begin{bmatrix} A_{i} & 0\\ B_{i}^{K}C_{i} & A_{i}^{K} \end{bmatrix} + H_{A,i}^{a}\Delta_{A,i}N_{A,i}^{a},$$

where $H_{A,i}^{a} = \begin{bmatrix} H_{A,i}\\ 0 \end{bmatrix}$ and $N_{A,i}^{a} = \begin{bmatrix} N_{A,i} & 0 \end{bmatrix}$.

Following the same of calculation as in the previous part, the BMI to be solved is:

$$\Phi_{i} + \begin{bmatrix} H_{A_{i}}^{aT} & 0 & 0 \end{bmatrix}^{T} \Delta_{A,i} \begin{bmatrix} 0 & N_{A_{i}}^{a} & 0 & 0 \end{bmatrix} + \begin{bmatrix} \star \end{bmatrix} < 0$$
(23)

Introduction	Problem formulation	Filter design ○○○○○○○○●●○○○	Example 00000000	Conclusion
Proof of previous	theorem			

$$\begin{bmatrix} -P_{j}^{-1} & \bar{A}_{i}^{a} & E_{i}^{a} & 0\\ \bar{A}_{i}^{aT} & -P_{i} & 0 & C_{i}^{aT}\\ E_{i}^{aT} & 0 & -\gamma_{i}^{2}I & F_{i}^{aT}\\ 0 & C_{i}^{a} & F_{i}^{a} & -I \end{bmatrix} < 0$$
(22)

With:
$$\bar{A}_{i}^{a} = \begin{bmatrix} \bar{A}_{i} & 0\\ B_{i}^{K}C_{i} & A_{i}^{K} \end{bmatrix} = \begin{bmatrix} A_{i} + H_{A,i}\Delta_{A,i}N_{A,i} & 0\\ B_{i}^{K}C_{i} & A_{i}^{K} \end{bmatrix} = \begin{bmatrix} A_{i} & 0\\ B_{i}^{K}C_{i} & A_{i}^{K} \end{bmatrix} + H_{A,i}^{a}\Delta_{A,i}N_{A,i}^{a},$$

where $H_{A,i}^{a} = \begin{bmatrix} H_{A,i}\\ 0 \end{bmatrix}$ and $N_{A,i}^{a} = \begin{bmatrix} N_{A,i} & 0 \end{bmatrix}$.

Following the same of calculation as in the previous part, the BMI to be solved is:

$$\Phi_{i} + \begin{bmatrix} H_{A_{i}}^{aT} & 0 & 0 & 0 \end{bmatrix}^{T} \Delta_{A,i} \begin{bmatrix} 0 & N_{A_{i}}^{a} & 0 & 0 \end{bmatrix} + \begin{bmatrix} \star \end{bmatrix} < 0$$
(23)

Apply Lemma 4 with $X = \begin{bmatrix} H_{A_i}^{aT} & 0 & 0 \end{bmatrix}^T$, $Y = \begin{bmatrix} 0 & N_{A_i}^a & 0 & 0 \end{bmatrix}$ and $Q_{\Delta} = I$.

Introduction	Problem formulation	Filter design ○○○○○○○○●○○○	Example 0000000	Conclusion
Proof of previous	theorem			

$$\begin{bmatrix} -P_{j}^{-1} & \bar{A}_{i}^{a} & E_{i}^{a} & 0\\ \bar{A}_{i}^{aT} & -P_{i} & 0 & C_{i}^{aT}\\ E_{i}^{aT} & 0 & -\gamma_{i}^{2}I & F_{i}^{aT}\\ 0 & C_{i}^{a} & F_{i}^{a} & -I \end{bmatrix} < 0$$
(22)

With:
$$\bar{A}_{i}^{a} = \begin{bmatrix} \bar{A}_{i} & 0\\ B_{i}^{K}C_{i} & A_{i}^{K} \end{bmatrix} = \begin{bmatrix} A_{i} + H_{A,i}\Delta_{A,i}N_{A,i} & 0\\ B_{i}^{K}C_{i} & A_{i}^{K} \end{bmatrix} = \begin{bmatrix} A_{i} & 0\\ B_{i}^{K}C_{i} & A_{i}^{K} \end{bmatrix} + H_{A,i}^{a}\Delta_{A,i}N_{A,i}^{a},$$

where $H_{A,i}^{a} = \begin{bmatrix} H_{A,i}\\ 0 \end{bmatrix}$ and $N_{A,i}^{a} = [N_{A,i} & 0].$

Following the same of calculation as in the previous part, the BMI to be solved is:

$$\Phi_{i} + \begin{bmatrix} H_{A_{i}}^{aT} & 0 & 0 & 0 \end{bmatrix}^{T} \Delta_{A,i} \begin{bmatrix} 0 & N_{A_{i}}^{a} & 0 & 0 \end{bmatrix} + \begin{bmatrix} \star \end{bmatrix} < 0$$
(23)

Apply Lemma 4 with $X = \begin{bmatrix} H_{A_i}^{aT} & 0 & 0 \end{bmatrix}^T$, $Y = \begin{bmatrix} 0 & N_{A_i}^a & 0 & 0 \end{bmatrix}$ and $Q_{\Delta} = I$.

And finally with two Shur complement, the BMI (21) is deduced.

Introduction 0000	Problem formulation	Filter design ○○○○○○○○●○○	Example 0000000	Conclusion
Suboptimal I	RSDTFEF			

Theorem (Suboptimal robust discrete-time fault estimation filter)

The suboptimal H_{∞} fault estimation problem is solvable if and only if there exist positive definite matrices R_i and $S_i \forall i \in \{1..N\}$ such that:

$$\begin{bmatrix} -R_{j} + A_{i}R_{i}A_{j}^{T} & E_{i} & H_{A,i} & A_{i}R_{i}N_{A,i}^{T} \\ E_{i}^{T} & -\gamma_{i}^{2}I & 0 & 0 \\ H_{A,i}^{T} & 0 & -\alpha_{i}^{-1}I & 0 \\ N_{A,i}R_{i}A_{i}^{T} & 0 & 0 & -\alpha_{i}I + N_{A,i}R_{i}N_{A,i}^{T} \end{bmatrix} < 0$$

$$(24a)$$

$$-S_{i} \quad A_{i}^{T}S_{j}E_{i} \quad \tilde{C}_{i}^{T} \quad A_{i}^{T}S_{j}H_{A,i} \quad N_{A,i}^{T} \\ jA_{i} \quad E_{i}^{T}S_{j}E_{i} - \gamma_{i}^{2}I \quad \tilde{F}_{i}^{T} \quad E_{i}^{T}S_{j}H_{A,i} \quad 0 \end{bmatrix}$$

$$\mathcal{W}_{CF_{i}}^{\mathsf{T}} \begin{bmatrix} E_{i}^{'} S_{j} A_{i} & E_{i}^{'} S_{j} E_{i} - \gamma_{i}^{z} I & F_{i}^{'} & E_{i}^{'} S_{j} H_{A,i} & 0\\ \tilde{C}_{i} & \tilde{F}_{i} & -I & 0 & 0\\ H_{A,i}^{\mathsf{T}} S_{j} A_{i} & H_{A,i}^{\mathsf{T}} S_{j} E_{i} & 0 & -\alpha_{i}^{-1} I + H_{A,i}^{\mathsf{T}} S_{j} H_{A,i} & 0\\ N_{A,i} & 0 & 0 & 0 & -\alpha_{i} I \end{bmatrix} \mathcal{W}_{CF_{i}} < 0$$

$$(24b)$$

Where $W_{CF_i} = \begin{bmatrix} W_{CF_i} & 0\\ 0 & I_{n_i+n_h+n_a} \end{bmatrix}$, α_i are free design scalars and W_{CF_i} are basis of null spaces of $\begin{bmatrix} C_i & F_i \end{bmatrix}$

 $\begin{bmatrix} A_i^T S_j A \end{bmatrix}$

Introduction

Problem formulation

Filter design

Example 00000000 Conclusion

Improved Robust fault estimation

Dynamical filters can be introduced in the design procedure:

- The filter $W_d(q^{-1})$ imposes robustness toward the disturbances in a specified frequency ranges
- and W_f(q⁻¹) is introduced to shape the desired response of f_k to the fault.

Figure: Fault estimation schemes
Introduction Problem formulation

Filter design

Example 00000000 Conclusion

Improved Robust fault estimation

Dynamical filters can be introduced in the design procedure:

- The filter $W_d(q^{-1})$ imposes robustness toward the disturbances in a specified frequency ranges
- and $W_f(q^{-1})$ is introduced to shape the desired response of \hat{f}_k to the fault.

The dynamical filters $W_{d,i}$ and $W_{t,i}$ can be defined as switched systems driven by the same switching signal of the system, they have the realization:

$$W_{f,i}(q^{-1}): \begin{cases} x_{k+1}^{F} = A_{f}^{F} x_{k}^{F} + B_{f}^{F} f_{k} \\ f_{k} = C_{f}^{F} x_{k}^{F} + D_{f}^{F} f_{k} \end{cases}$$
(25)

$$\mathcal{W}_{d,i}(q^{-1}): \begin{cases} x_{k+1}^{D} = A_{i}^{D} x_{k}^{D} + B_{i}^{D} d_{k} \\ d_{k} = C_{i}^{D} x_{k}^{D} + D_{i}^{D} \overline{d}_{k} \end{cases}$$
(26)

where $x_k^F \in \mathbb{R}^{n_F}$ and $x_k^D \in \mathbb{R}^{n_D}$, and it is assumed that $dim(f_k) = dim(\overline{f}_k)$ and $dim(d_k) = dim(\overline{d}_k)$.

Figure: Fault estimation schemes

Introduction	Problem formulation	Filter design	Example	Conclusion
		0000000000		

Augmented system with weighting filters

The new state of the augmented system is now defined by $x_{\nu}^{a} = \begin{bmatrix} x_{\nu}^{T} & x_{\nu}^{FT} & x_{\nu}^{DT} & x_{\nu}^{KT} \end{bmatrix}^{T}$.

$$\mathbf{x}_{k}^{a} = \begin{bmatrix} \mathbf{x}_{k}^{\prime} & \mathbf{x}_{k}^{\prime \prime} & \mathbf{x}_{k}^{\prime \prime} & \mathbf{x}_{k}^{\prime \prime} \end{bmatrix}^{\dagger} :$$

$$\begin{cases} x_{k+1}^{a} = A_{i}^{a} x_{k+1}^{a} + E_{i}^{a} w_{k} \\ z_{k} = C_{i}^{a} x_{k}^{a} + F_{i}^{a} w_{k} \end{cases}$$
(27)

Augmented system with weighting filters

The new state of the augmented system is now defined by $x_k^a = \begin{bmatrix} x_k^T & x_k^{FT} & x_k^{DT} & x_k^{KT} \end{bmatrix}^T$:

$$\begin{cases} x_{k+1}^{a} = A_{i}^{a} x_{k+1}^{a} + E_{i}^{a} w_{k} \\ z_{k} = C_{i}^{a} x_{k}^{a} + F_{i}^{a} w_{k} \end{cases}$$
(27)

Where
$$A_{i}^{a} = \begin{bmatrix} \breve{A}_{i} & 0 \\ B_{i}^{K}\breve{C}_{i} & A_{i}^{K} \end{bmatrix}$$
, $E_{i}^{a} = \begin{bmatrix} \breve{E}_{w,i} \\ B_{i}^{K}\breve{F}_{w,i} \end{bmatrix}$, $C_{i}^{a} = \begin{bmatrix} D_{i}^{K}\breve{C}_{i} + \breve{C}_{i} & C_{i}^{K} \end{bmatrix}$,
 $F_{i}^{a} = D_{i}^{K}\breve{F}_{w,i} + \breve{F}_{i}, \breve{A}_{i} = \begin{bmatrix} A_{i} & 0 & E_{d,i}C_{i}^{D} \\ 0 & A_{i}^{F} & 0 \\ 0 & 0 & A_{i}^{D} \end{bmatrix}$, $\breve{E}_{w,i} = \begin{bmatrix} E_{d,i}D_{i}^{D} & E_{f,i} \\ 0 & B_{i}^{F} \\ B_{i}^{D} & 0 \end{bmatrix}$,
 $\breve{C}_{i} = \begin{bmatrix} C_{i} & 0 & F_{d,i}C_{i}^{D} \end{bmatrix}$, $\breve{F}_{w,i} = \begin{bmatrix} F_{d,i}D_{i}^{D} & F_{f,i} \end{bmatrix}$, $\breve{C}_{i} = \begin{bmatrix} 0 & -C_{i}^{F} & 0 \end{bmatrix}$, and
 $\breve{F}_{i} = \begin{bmatrix} 0 & -\tilde{D}_{i}^{F} \end{bmatrix}$.

Augmented system with weighting filters

The new state of the augmented system is now defined by $x_k^a = \begin{bmatrix} x_k^T & x_k^{FT} & x_k^{DT} & x_k^{KT} \end{bmatrix}^T$:

$$\begin{cases} x_{k+1}^{a} = A_{i}^{a} x_{k+1}^{a} + E_{i}^{a} w_{k} \\ z_{k} = C_{i}^{a} x_{k}^{a} + F_{i}^{a} w_{k} \end{cases}$$
(27)

Where
$$A_{i}^{a} = \begin{bmatrix} \check{A}_{i} & 0 \\ B_{i}^{K}\check{C}_{i} & A_{i}^{K} \end{bmatrix}$$
, $E_{i}^{a} = \begin{bmatrix} \check{E}_{w,i} \\ B_{i}^{K}\check{F}_{w,i} \end{bmatrix}$, $C_{i}^{a} = \begin{bmatrix} D_{i}^{K}\check{C}_{i} + \check{C}_{i} & C_{i}^{K} \end{bmatrix}$,
 $F_{i}^{a} = D_{i}^{K}\check{F}_{w,i} + \check{F}_{i}, \check{A}_{i} = \begin{bmatrix} A_{i} & 0 & E_{d,i}C_{i}^{D} \\ 0 & A_{i}^{F} & 0 \\ 0 & 0 & A_{i}^{D} \end{bmatrix}$, $\check{E}_{w,i} = \begin{bmatrix} E_{d,i}D_{i}^{D} & E_{f,i} \\ 0 & B_{i}^{F} \\ B_{i}^{D} & 0 \end{bmatrix}$,
 $\check{C}_{i} = \begin{bmatrix} C_{i} & 0 & F_{d,i}C_{i}^{D} \end{bmatrix}$, $\check{F}_{w,i} = \begin{bmatrix} F_{d,i}D_{i}^{D} & F_{f,i} \end{bmatrix}$, $\check{C}_{i} = \begin{bmatrix} 0 & -C_{i}^{F} & 0 \end{bmatrix}$, and
 $\check{F}_{i} = \begin{bmatrix} 0 & -\tilde{D}_{i}^{F} \end{bmatrix}$.

Using the new notation, theorem 2 can be applied on the augmented system.

Augmented system with weighting filters

The new state of the augmented system is now defined by $x_k^a = \begin{bmatrix} x_k^T & x_k^{FT} & x_k^{DT} & x_k^{KT} \end{bmatrix}^T$:

$$\begin{cases} x_{k+1}^{a} = A_{i}^{a} x_{k+1}^{a} + E_{i}^{a} w_{k} \\ z_{k} = C_{i}^{a} x_{k}^{a} + F_{i}^{a} w_{k} \end{cases}$$
(27)

Where
$$A_{i}^{a} = \begin{bmatrix} \check{A}_{i} & 0 \\ B_{i}^{K}\check{C}_{i} & A_{i}^{K} \end{bmatrix}$$
, $E_{i}^{a} = \begin{bmatrix} \check{E}_{w,i} \\ B_{i}^{K}\check{F}_{w,i} \end{bmatrix}$, $C_{i}^{a} = \begin{bmatrix} D_{i}^{K}\check{C}_{i} + \check{C}_{i} & C_{i}^{K} \end{bmatrix}$,
 $F_{i}^{a} = D_{i}^{K}\check{F}_{w,i} + \check{F}_{i}, \check{A}_{i} = \begin{bmatrix} A_{i} & 0 & E_{d,i}C_{i}^{D} \\ 0 & A_{i}^{F} & 0 \\ 0 & 0 & A_{i}^{D} \end{bmatrix}$, $\check{E}_{w,i} = \begin{bmatrix} E_{d,i}D_{i}^{D} & E_{f,i} \\ 0 & B_{i}^{F} \\ B_{i}^{D} & 0 \end{bmatrix}$,
 $\check{C}_{i} = \begin{bmatrix} C_{i} & 0 & F_{d,i}C_{i}^{D} \end{bmatrix}$, $\check{F}_{w,i} = \begin{bmatrix} F_{d,i}D_{i}^{D} & F_{f,i} \end{bmatrix}$, $\check{C}_{i} = \begin{bmatrix} 0 & -C_{i}^{F} & 0 \end{bmatrix}$, and
 $\check{F}_{i} = \begin{bmatrix} 0 & -\tilde{D}_{i}^{F} \end{bmatrix}$.

Using the new notation, *theorem 2* can be applied on the augmented system.

Remark 2: Post scaling for low frequencies estimation

In order to get an exact estimate of the fault signal in low frequency range, an a posteriori scaling factor can be added on the output of the K_i filter.

Farhat, Koenig(University Grenoble-Alpes)

RFDF for Uncertain Switched Systems

Numerical ex	ample for two design m	ethode		
			••••	
Introduction	Problem formulation	Filter design	Example	Conclusion

Consider the uncertain switched LTI system :

$$\begin{cases} x_{k+1} = (A_{\alpha(k)} + H_{A,\alpha(k)}\Delta_{A,\alpha(k)}N_{A,\alpha(k)})x_k + E_{d,\alpha(k)}d_k + E_{f,\alpha(k)}f_k \\ y_k = C_{\alpha(k)}x_k + F_{d,\alpha(k)}d_k + F_{f,\alpha(k)}f_k \end{cases}$$
(28)

with the following nominal matrices:

And for the uncertainties directions:

$$H_{A,1} = H_{A,2} = \begin{bmatrix} 0.2 & 0.002 \end{bmatrix}^T N_{A,1} = \begin{bmatrix} 0.22 & .128 \end{bmatrix}$$
 and $N_{A,2} = \begin{bmatrix} 0.22 & .13 \end{bmatrix}$

Introduction Pro	Dolem formulation	Filter design	Conclusion

Introduction Pro	Dolem formulation	Filter design	Conclusion

0000	0000		0000000	
Introduction	Problem formulation	Filter design	Example	Conclusion

Figure: First approach: Fault estimation filter

Figure: First approach: Fault estimation filter

Figure: Second approach: improved filtering

First, define the loop shaping matrices and weighting filter W_f and W_d .

Figure: First approach: Fault estimation filter

Figure: Second approach: improved filtering

First, define the loop shaping matrices and weighting filter W_f and W_d .

Then using Matlab optimization tools such YALMIP or SeDuMi, the set of LMIs are solved minimizing the criterion α_i .

Figure: First approach: Fault estimation filter

Figure: Second approach: improved filtering

First, define the loop shaping matrices and weighting filter W_f and W_d .

Then using Matlab optimization tools such YALMIP or SeDuMi, the set of LMIs are solved minimizing the criterion α_i .

The post filters scheduling factors ξ_i can be calculated and added to K_i according to remark 2: $\tilde{K}_i(q^{-1}) = \xi_i K_i(q^{-1})$

Introduction 0000	Problem formulation	Filter design	Example 0000000	Conclusion	
Numerical example for two design methods: results					
In this e	xample:				

- The considered perturbation is a white noise.
- two fault signals are considered: abrupt fault and sinusoidal one.

- The considered perturbation is a white noise.
- two fault signals are considered: abrupt fault and sinusoidal one.

Figure: Switching sequence

Figure: disturbance signal

- The considered perturbation is a white noise.
- two fault signals are considered: abrupt fault and sinusoidal one.

Figure: Switching sequence

Figure: disturbance signal

The two approaches for filter design are implemented in order to estimate the fault f_k .

- The considered perturbation is a white noise.
- two fault signals are considered: abrupt fault and sinusoidal one.

Figure: Switching sequence

Figure: disturbance signal

The two approaches for filter design are implemented in order to estimate the fault f_k .

Figure: Fault estimation without filtering

- The considered perturbation is a white noise.
- two fault signals are considered: abrupt fault and sinusoidal one.

Figure: Switching sequence

Figure: disturbance signal

The two approaches for filter design are implemented in order to estimate the fault f_k .

Figure: Fault estimation without filtering

Figure: Fault estimation with filtering

Introduction	Problem formulation

Vehicle fault detection

Farhat, Koenig(University Grenoble-Alpes)

RFDF for Uncertain Switched Systems

Gdr MACS S3, ENSAM Paris, 04/02/16 27/33

Introduction	Problem formulation	Filter design	Example	Conclusion
Test campaign				

- Collaboration with MIPS (Mulhouse), CAOR (Mines Paris-tech) and SOBEN, in the ANR Project INOVE.
- Test campaign on instrumented Renault car with professional pilot.

Introduction 0000	Problem formulation	Filter design	Example 00000000	Conclusion
Test campaign				

- Collaboration with MIPS (Mulhouse), CAOR (Mines Paris-tech) and SOBEN, in the ANR Project INOVE.
- Test campaign on instrumented Renault car with professional pilot.

the state to be the	and a second of the			
			00000000	
ntroduction	Problem formulation	Filter design	Example	Conclusion

Uncertain bicycle model

Consider the non linear bicycle model of the vehicle for lateral control:

$$\begin{bmatrix} \dot{\beta}(t) \\ \ddot{\psi}(t) \end{bmatrix} = \begin{bmatrix} -\frac{c_r + c_f}{m v(t)} & \frac{c_r l_r - c_l l_f}{m v^2(t)} - 1 \\ \frac{c_r l_r - c_r l_f}{l_z} & -\frac{c_r l_r^2 + c_l l_f^2}{l_z v(t)} \end{bmatrix} \begin{bmatrix} \beta(t) \\ \dot{\psi}(t) \end{bmatrix} + \begin{bmatrix} \frac{c_f}{m v(t)} \\ \frac{c_r l_f}{l_z} \end{bmatrix} u_L(t) + \begin{bmatrix} \frac{1}{m v(t)} \\ \frac{l_w}{l_z} \end{bmatrix} F_w(t)$$

$$y = \begin{bmatrix} -\frac{c_r + c_f}{m} & c_f l_f - c_r l_r \end{bmatrix} \begin{bmatrix} \beta(t) \\ \dot{\psi}(t) \end{bmatrix} + \begin{bmatrix} \frac{c_f}{m} \end{bmatrix} u_L(t)$$

$$(29)$$

- states : side slip angle eta and the yaw rate $\dot{\psi}$
- command: the steering angle uL

- y: lateral acceleration γ_L
- perturbation: wind force F_w

I Incertain hic	vole model			
0000	0000	00000000000	00000000	
Introduction	Problem formulation	Filter design	Example	Conclusion

Consider the non linear bicycle model of the vehicle for lateral control:

$$\begin{bmatrix} \dot{\beta}(t) \\ \ddot{\psi}(t) \end{bmatrix} = \begin{bmatrix} -\frac{c_r + c_f}{m v(t)} & \frac{c_r l_r - c_l l_f}{m v^2(t)} - 1 \\ \frac{c_r l_r - c_r l_f}{l_z} & -\frac{c_r l_r^2 + c_l l_f^2}{l_z v(t)} \end{bmatrix} \begin{bmatrix} \beta(t) \\ \dot{\psi}(t) \end{bmatrix} + \begin{bmatrix} \frac{c_f}{m v(t)} \\ \frac{c_r l_f}{l_z} \end{bmatrix} u_L(t) + \begin{bmatrix} \frac{1}{m v(t)} \\ \frac{l_w}{l_z} \end{bmatrix} F_w(t)$$

$$y = \begin{bmatrix} -\frac{c_r + c_f}{m} & c_f l_f - c_r l_r \end{bmatrix} \begin{bmatrix} \beta(t) \\ \dot{\psi}(t) \end{bmatrix} + \begin{bmatrix} \frac{c_f}{m} \end{bmatrix} u_L(t)$$

$$(29)$$

- states : side slip angle β and the yaw rate $\dot{\psi}$
- command: the steering angle u_L

- y: lateral acceleration γ_L
- perturbation: wind force F_w

The fault considered in this application is an actuator fault, that occurs on the actuator.

Introduction 0000	Problem formulation	Filter design	Example 00000000	Conclusion
Uncertain bi	cycle model			
Conside	er the non linear bicycle m	odel of the vehicle for late	eral control.	

$$\begin{bmatrix} \dot{\beta}(t) \\ \ddot{\psi}(t) \end{bmatrix} = \begin{bmatrix} -\frac{c_r + c_f}{mv(t)} & \frac{c_r l_r - c_l l_f}{mv^2(t)} - 1 \\ \frac{c_r l_r - c_f l_f}{l_z} & -\frac{c_r l_r^2 + c_f l_f^2}{l_z v(t)} \end{bmatrix} \begin{bmatrix} \beta(t) \\ \dot{\psi}(t) \end{bmatrix} + \begin{bmatrix} \frac{c_f}{mv(t)} \\ \frac{c_r l_f}{l_z} \end{bmatrix} u_L(t) + \begin{bmatrix} \frac{1}{mv(t)} \\ \frac{l_w}{l_z} \end{bmatrix} F_w(t)$$

$$y = \begin{bmatrix} -\frac{c_r + c_f}{m} & c_l l_f - c_r h_r \end{bmatrix} \begin{bmatrix} \beta(t) \\ \dot{\psi}(t) \end{bmatrix} + \begin{bmatrix} \frac{c_f}{m} \end{bmatrix} u_L(t)$$

$$(29)$$

- states : side slip angle β and the yaw rate $\dot{\psi}$
- command: the steering angle u_L

- y: lateral acceleration γ_L
- perturbation: wind force F_w

The fault considered in this application is an actuator fault, that occurs on the actuator.

Using a Taylor expansion around the points v_{α} :

$$\frac{1}{v}|_{v=v_{\alpha}} = \frac{1}{v_{\alpha}} - \frac{1}{v_{\alpha}^{2}}(v - v_{\alpha}) + \mathcal{O}(\frac{1}{v^{2}})$$
(30)

$$\frac{1}{v^2}|_{v=v_{\alpha}} = \frac{1}{v_{\alpha}^2} - \frac{2}{v_{\alpha}^3}(v-v_{\alpha}) + \mathcal{O}(\frac{1}{v^3})$$
(31)

Then
$$A = \underbrace{A_0 + \frac{1}{v_\alpha}A_1 + \frac{1}{v_\alpha^2}A_2}_{A_\alpha} + \underbrace{\left(-\frac{1}{v^2}A_1 - \frac{2}{v_\alpha^3}A_2\right)}_{H_{A,\alpha}}\underbrace{\left(v - v_\alpha\right)}_{\Delta_{X,\alpha}}$$

Farhat, Koenig(University Grenoble-Alpes)

Introduction	Problem formulation	Filter design	Example	Conclusion
Experimental dat	a			

0000	0000	00000000000	0000000	
Introduction	Problem formulation	Filter design	Example	Conclusion

Introduction	Problem formulation	Filter design	Example 00000000	Conclusion
Experimental data	1			

Figure: Longitudinal velocity [km/h] and switching rule

Introduction	Problem formulation	Filter design	Example 00000000	Conclusion
Experimental data	1			

Figure: Longitudinal velocity [km/h] and switching rule

Introduction 0000	Problem formulation	Filter design	Example ○○○○○○●	Conclusion
Framework				

$$\begin{cases}
x_{k+1} = (A_{\alpha(k)} + H_{A,\alpha(k)}\Delta_{\alpha(k)}N_{A,\alpha(k)})x_k \\
+ (E_{d,\alpha(k)} + H_{D,\alpha(k)}\Delta_{\alpha(k)}N_{D,\alpha(k)})d_k \\
+ (E_{f,\alpha(k)} + H_{F,\alpha(k)}\Delta_{\alpha(k)}N_{F,\alpha(k)})f_k
\end{cases}$$
(32)
$$y_k = C_{\alpha(k)}x_k + F_{d,\alpha(k)}d_k + F_{f,\alpha(k)}f_k$$

Where $d_k = \begin{bmatrix} u_L(k) & F_w(k) \end{bmatrix}$ as unknown inputs

Introduction 0000	Problem formulation	Filter design	Example ○○○○○○●	Conclusion
Framework				

$$\begin{pmatrix}
x_{k+1} = (A_{\alpha(k)} + H_{A,\alpha(k)}\Delta_{\alpha(k)}N_{A,\alpha(k)})x_k \\
+ (E_{d,\alpha(k)} + H_{D,\alpha(k)}\Delta_{\alpha(k)}N_{D,\alpha(k)})d_k \\
+ (E_{f,\alpha(k)} + H_{F,\alpha(k)}\Delta_{\alpha(k)}N_{F,\alpha(k)})f_k \\
y_k = C_{\alpha(k)}x_k + F_{d,\alpha(k)}d_k + F_{f,\alpha(k)}f_k
\end{cases}$$
(32)

Where $d_k = \begin{bmatrix} u_L(k) & F_w(k) \end{bmatrix}$ as unknown inputs

and the uncertainties matrices:

and the uncertainties matrices. $H_{\alpha(k)}\Delta_{\alpha(k)}N_{\alpha(k)} = \begin{bmatrix} H_{A,\alpha(k)} & H_{D,\alpha(k)} & H_{F,\alpha(k)} \end{bmatrix} \Delta_{\alpha(k)} \begin{bmatrix} N_{A,\alpha(k)} & N_{D,\alpha(k)} & N_{F,\alpha(k)} \end{bmatrix}$

Introduction 0000	Problem formulation	Filter design	Example ○○○○○○●	Conclusion
Framework				

$$\begin{pmatrix}
x_{k+1} = (A_{\alpha(k)} + H_{A,\alpha(k)}\Delta_{\alpha(k)}N_{A,\alpha(k)})x_k \\
+ (E_{d,\alpha(k)} + H_{D,\alpha(k)}\Delta_{\alpha(k)}N_{D,\alpha(k)})d_k \\
+ (E_{f,\alpha(k)} + H_{F,\alpha(k)}\Delta_{\alpha(k)}N_{F,\alpha(k)})f_k \\
y_k = C_{\alpha(k)}x_k + F_{d,\alpha(k)}d_k + F_{f,\alpha(k)}f_k
\end{cases}$$
(32)

Where $d_k = \begin{bmatrix} u_L(k) & F_w(k) \end{bmatrix}$ as unknown inputs

and the uncertainties matrices:

$$H_{\alpha(k)}\Delta_{\alpha(k)}N_{\alpha(k)} = \begin{bmatrix} H_{A,\alpha(k)} & H_{D,\alpha(k)} & H_{F,\alpha(k)} \end{bmatrix} \Delta_{\alpha(k)} \begin{bmatrix} N_{A,\alpha(k)} & N_{D,\alpha(k)} & N_{F,\alpha(k)} \end{bmatrix}$$

The extension is easy for the uncertainties.

Introduction 0000	Problem formulation	Filter design	Example ○○○○○○●	Conclusion
Framework				

$$\begin{cases}
x_{k+1} = (A_{\alpha(k)} + H_{A,\alpha(k)}\Delta_{\alpha(k)}N_{A,\alpha(k)})x_k \\
+ (E_{d,\alpha(k)} + H_{D,\alpha(k)}\Delta_{\alpha(k)}N_{D,\alpha(k)})d_k \\
+ (E_{f,\alpha(k)} + H_{F,\alpha(k)}\Delta_{\alpha(k)}N_{F,\alpha(k)})f_k
\end{cases}$$
(32)
$$y_k = C_{\alpha(k)}x_k + F_{d,\alpha(k)}d_k + F_{f,\alpha(k)}f_k$$

Where $d_k = \begin{bmatrix} u_L(k) & F_w(k) \end{bmatrix}$ as unknown inputs

and the uncertainties matrices:

$$H_{\alpha(k)}\Delta_{\alpha(k)}N_{\alpha(k)} = \begin{bmatrix} H_{A,\alpha(k)} & H_{D,\alpha(k)} & H_{F,\alpha(k)} \end{bmatrix} \Delta_{\alpha(k)} \begin{bmatrix} N_{A,\alpha(k)} & N_{D,\alpha(k)} & N_{F,\alpha(k)} \end{bmatrix}$$

The extension is easy for the uncertainties. Work in progress.

Introduction	Problem formulation	Filter design	Example 0000000	Conclusion
Conclusions & Fu	uture Work			

- Introduced a design of discrete time fault detection filter for switched system using two aproaches, with some degree of freedom
- Extended this method for uncertain switched system
- Illustrated these two approches with numerical example

Introduction	Problem formulation	Filter design	Example 0000000	Conclusion
Conclusions & Fu	iture Work			

- Introduced a design of discrete time fault detection filter for switched system using two aproaches, with some degree of freedom
- Extended this method for uncertain switched system
- Illustrated these two approches with numerical example

Future works:

• This work is under submission to a journal (IEEE TAC)

Introduction	Problem formulation	Filter design	Example 0000000	Conclusion
Conclusions & Fu	iture Work			

- Introduced a design of discrete time fault detection filter for switched system using two aproaches, with some degree of freedom
- Extended this method for uncertain switched system
- Illustrated these two approches with numerical example

Future works:

- This work is under submission to a journal (IEEE TAC)
- Extension for fault tolerant control strategies in both vertical and lateral vehicle dynamics

Introduction	Problem formulation	Filter design	Example 0000000	Conclusion
Conclusions & Fu	iture Work			

- Introduced a design of discrete time fault detection filter for switched system using two aproaches, with some degree of freedom
- Extended this method for uncertain switched system
- Illustrated these two approches with numerical example

Future works:

- This work is under submission to a journal (IEEE TAC)
- Extension for fault tolerant control strategies in both vertical and lateral vehicle dynamics
- Generalization for uncertain LPV systems, and uncertain switched system.

Introduction	Problem formulation	Filter design	Example 00000000	Conclusion
Conclusions & Future Work				

- Introduced a design of discrete time fault detection filter for switched system using two aproaches, with some degree of freedom
- Extended this method for uncertain switched system
- Illustrated these two approches with numerical example

Future works:

- This work is under submission to a journal (IEEE TAC)
- Extension for fault tolerant control strategies in both vertical and lateral vehicle dynamics
- Generalization for uncertain LPV systems, and uncertain switched system.
- and maybe descriptor uncertain switched system.
| Introduction | Problem formulation | Filter design | Example | Conclusion |
|--------------|---------------------|---------------|---------|------------|
| | | | | |

Thank you for your attention

Any questions?

