
DIAGNOSIS AND FAULT-TOLERANT CONTROL 

 USING SET-BASED METHODS 

Vicenç Puig  
Advanced Control Systems (SAC)  

Research Group 

 

UNIVERSITAT POLITÈCNICA DE CATALUNYA 

 

1 Réunion GT S3 - February 4th, 2016 

 



1.  Introduction 

2.  Interval Models for Fault Detection 

3.  Fault Detection using the Interval Observer Approach 

4.  Fault Detection using the Set-membership Approach 

5.  Identification for Robust Fault Detection 

6.  Fault-tolerance Evaluation 

7.  Real Applications 

8.  Conclusions  

9.  Further Research 

 

 

 

 

Index 

2 Réunion GT S3 - February 4th, 2016 

 



Model-based Fault Detection 

 Model-based fault detection methods rely on the concept of analytical 
redundancy.  

 

 

 

 

 

 

 

 

 

 

 However, modeling errors and disturbances in complex engineering systems 
are inevitable, and hence there is a need to develop robust fault detection 
algorithms. 

 

 

 

 3 Réunion GT S3 - February 4th, 2016 

 



Robustness in Model-based Fault Detection 

 The robustness of a fault detection system means that it must be only sensitive 
to faults, even in the presence of model-reality differences.  
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Passive Robust Decision-Making  

using Interval Models 

THRESHOLD 

DECISION 

MAKING 
RESIDUAL 

FAULT INDICATION 

ADAPTIVE 

STRUCTURED 

UNCERTAINTY 

UNSTRUCTURED 

UNCERTAINTY 

INTERVAL 

MODELS AND 

METHODS 

0 20 40 60 80 100
-5

-4

-3

-2

-1

0

1

2

 Variable de estado X1

FIXED 

ADAPTIVE 

RESIDUAL 

(ENVELOPES) 

ˆ ˆ ˆ,k k kk
y y y  

 
Y

5 Réunion GT S3 - February 4th, 2016 

 



1.  Introduction 

2.  Interval Models for Fault Detection 

3.  Fault Detection using the Interval Observer Approach  

4.  Fault Detection using the Set-membership Approach 

5.  Identification for Robust Fault Detection 

6.  Fault-tolerance Evaluation 

7.  Real Applications 

8.  Conclusions  

9.  Further Research 

 

 

 

 

Index 

6 Réunion GT S3 - February 4th, 2016 

 



Interval Model for FDI (1) 

 Consider that the system to be monitored can be described by a general 
nonlinear model in discrete-time 

 

 

 

 

 The parameters 2Rm are assumed to be unknown but belong to known 
intervals 

 

 

 

 An additional equation defining the allowed variance of parameters can be 
introduced for this purpose: 

 

 

 where |w(k)|·.   
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Interval Model for FDI (2) 

 Measurement noise can be taken into account by assuming that the 
measurements are known to belong to intervals [y(k)], often created by adding 
an noise term  to the actual measurement y(k), that is, 

 

 

 

 In case uncertain parameters appear linearly with respect to inputs/outputs, the 
system model will be expressed in regressor form 

 

 

 

 This corresponds to a MA parity equation. 
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Fault Detection using Direct Image Test 

 Considering the uncertainty in 
parameters          , the direct image test 
is 

 

 

  

 Then, no fault is indicated. In other case, 
a fault is indicated. 

 

 The interval for the estimated output can 
be determined by 

 

 

 

 where: 
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Fault Detection Algorithm using Inverse Test 
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Zonotopes (1) 

 A zonotope can be thought of as a Minkowski sum of a finite set of line 

segments: 

 

 

 

 A zonotope can also be seen as the linear image of a m-hypercube in a 

n-space 
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Zonotope Arithmetic 

 

 Sum of two zonotopes: 

 

 Image of a zonotope by a linear application L: 

 

 Smallest interval box containing a zonotope ("interval hull"): 

 

 

 

 

 Inverse image of a zonotope by a linear application 

 Intersection of two zonotopes 

 

Zonotopes (2) 
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14 

 Let the model for the state estimator of the monitored system described by a 

interval Luenberger observer formulated as 

 

 

 

 

 This approach is in a half-way between  

      simulation and prediction approaches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                

 

Interval Observer (1) 
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 Let us denote the following sequences from the first time instant to time k: 

 

 

 

 

 

 

 The set of estimated states at time k using the interval observer approach is 

expressed by 
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 The previous uncertain state set at time k can be computed approximately 

by admitting the rupture of the existing relations between variables of 

consecutive time instants: 

Implementation of Interval Observers  

Algorithm 1: Worst-case State Observer using Set Computations 
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Problems of Interval Observers 

 When approximating the region of system states using sets 

several problems should be considered: 

 

– The wrapping effect 

 

– The preservation of the parameter time-invariance 

 

– The under/over estimation of the region 

 

 These problems produce the propagation of the uncertainty, 

deriving in the production of inconsistent, and even, unstable 

simulations/observations. 
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Wrapping Effect 

 The problem of wrapping is related to 

the use of a crude approximation of the 

real region of state variables. 

 

 At every stage of the 

simulation/observation, the true region of 

uncertain states is wrapped into a 

superset feasible to construct and to 

represent on a computer.  

 

 Because of the overestimation of the a 

wrapped set is proportional to its radius, a 

spurious growth of the enclosures can 

result if the composition of wrapping and 

mapping is iterated. 
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Designing the Observer Gain to  

Avoid the Wrapping Effect 

 Given a non-isotonic interval system, an interval observer could be designed 

to fulfil the condition of isotonicity if all the elements of the observer matrix A0 

satisfy:          . 

 

 In case of an isotonic observer is designed through appropriate selection of the 

observer gain, the wrapping effect is not present.  

 

 Consequently, a simple iterative scheme based on a region propagation will 

work, providing the same results than a trajectory propagation algorithm. 

 

 Moreover, a set-based (time-varying) interval observation and a trajectory 

based (time-invariant) interval observation will provide the same interval 

observation 
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 Fault detection test:  

      Given the sequences of measured inputs      and outputs     of the actual system, 

a fault is said to have occurred at time k if 

 

                                                    

    or alternatively, 

 

 

 In case noise in measurements is considered                         , a fault is detected 

at time k if 

 

 

 

 Fault detection consists in detecting a fault using the previous test given a 

sequence of measured inputs       and ouptuts     . 

 

 

 

 

 

 

 

 

 

 

 

 

Fault Detection using Interval Observers (1) 
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Fault Detection using Interval Observers (2) 

Algorithm 2: Fault Detection using Worst-case Observer 
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Invariant Sets and Interval Obsevers 

Invariant set-based FD principle  Interval observer-based FD principle  
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Advantages and Disadvantages 
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 Let us denote the following sequences from the first time instant to time k: 

 

 

 

 

 

 

 The set of estimated states at time k using the set-membership approach is 

expressed by 
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 The previous uncertain state set at time k can be computed approximately by 

admitting the rupture of the existing relations between variables of consecutive 

time instants. 

 

 Two sets are introduced: 

 

 The set of predicted states at time k is given by 

 

 

 

 The set of consistent states at time k with measurement is defined as 

 

 

Implementation of Set-membership  

Estimators (1)  
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 This allows to write the following algorithm: 

Implementation of Set-membership  

Estimators (2)  

Algorithm 1: Set-membership State Estimation using Set Computations 
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 Fault detection test:  

 

 Given the sequences of measured inputs      and outputs     of the actual system, 

a fault is said to have occurred at time k if there does not exist a set of 

sequences (             ) which satisfy the nominal system description with initial 

condition, noise, disturbances and  parameters belonging to (         ),                       

respectively. 

 

 Fault detection consists in detecting a fault given a sequence of measured 

inputs       and outputs     . 
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Fault Detection  
using Set-membership Estimation (2) 

Algorithm 2: Fault Detection using Set-membership Estimation 
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Identification for Robust Fault Detection 

 One of the key points in model based fault detection is how detection models 

are estimated. 

 

 In case of set-membership methods, the set for uncertain parameters should 

be estimated. 

 

 The set for uncertain parameters depend on the way how the uncertain model 

will be used for fault detection.  

 

 At least two possible types of models can be derived: 

 

 interval model 

 set-membership or consistency based model 
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Given a set of measurements ( )
m

y k  taken in a given interval [0, ]k N , 

considering that noise is bounded such that ( ) ( )m my k Y k , then a set of model 

parameters that produces an envelope that cover all measurements  (“worst-
case approach”): 
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where at each time tinstant k , model temporal envelope is computed according 

to: 

Identification for the Direct Test (1) 
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Given a set of measurements ( )
m

y k  taken in a given interval [0, ]k N , 

considering that noise is bounded such that ( ) ( )m my t Y t , then a set of model 

parameters that are consistent with model and measurements would be 
estimated such that (“consistency approach”): 
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Fault Tolerant Control 
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 The solution of a control problem consists on finding a control law in a given set 

of control laws   such that the controlled system achieves the control 
objectives O  while its behavior satisfies a set of constraints    . 

 The solution of the problem is completely defined by the triple: 

 In the case of a linear constrained predictive control law:               
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Hybrid MPC Fault-tolerant Control 
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  Definition 1. The feasible solution set is given by 

 

 

and gives the input and state sets compatible with system constraints which originate 

the set of predictive states. 

 

  Definition 2. The feasible control objectives set is given by 

 

 

and corresponds to the set of all values of J obtained from feasible solutions. 

 

  Definition 3. The admissible solution set is given by 

where        corresponds to the feasible solution set of a actuator fault configuration 

and       defined as the admissible control objective set. 
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 The admissibility evaluation using a set computation approach starts obtaining the 

feasible solution set      given a set of initial states    ,  the system dynamic and 

the system operating constraints over N.  

 

 

 

 

Admissibility Evaluation using  
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 At the same time that the feasible solution set is computed    ,   the feasible 

control objectives set      at time k=N can be obtained using the following 

algorithm: 

 

Admissibility Evaluation using  

Set Computations (2) 
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 Constraints satisfaction problem:  

 "A constraints satisfaction problem (CSP) on sets can be formulated as a 3-

tuple H = (V,D,C) where: 

 

  V = { v1 ,  ,vn } is a finite  set of variables,  

 D = {D1 ,     ,Dn } is the set of their domains represented by closed sets  

  C ={c1 ,  ,cn } is a finite set of constraints relating variables of  V " 

 

 A point solution of H is a n-tuple (v1 , ,vn ) 2 D such that all constraints C are 

satisfied.  

 The set of all point solutions of H is denoted by S(H). This set is called the global 

solution set.  

 The variable vi  2 Vi is consistent in H if and only if: 

 

 

 with i=1...n 

 

 

 

Admissibility Evaluation using  

Constraints Satisfactions (1) 
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 The admissibility evaluation requires the computation of the admissible solution 

set:  

 

 Its definition suggests a way of implementation since its mathematical description 

can be viewed as a constraints satisfaction problem: 

Admissibility Evaluation using  

Constraints Satisfaction (2) 

Algorithm 1: Admissibility Evaluation using Constraints Satisfaction 

  N 1

k 1 k k 0
x,u x f ( x ,u )



  
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The Barcelona Sewer Network 

 Data 

 Typology                                     combined 

 Length                                         1.650 km 

 Storage capacity            2.634.124 m3 

 Visitable portion                              55,12% 

 Mean transversal section                1,8 m2 

 31 catchment area                      12.326 ha 

 

 

 Particularities 

 Topographic profile: steep slope, gentle at 
rivers and sea 

 Urban ground:  90% impervious 

 Meteorology: yearly precipitation: 600mm,                       
intensity: up to 150 mm/h in 15 minutes 
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Barcelona and its Rain 
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Solution (1): Detention Tanks 
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Solution (2): Barcelona’s RTC System 

ELEMENTS NUMBER 

Rain gauges 22 

Water level sensors 119 

Pumping Stations 11 

Gates 23 

Detention Tanks 10 
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MPC Multicriteria optimization 

- Reduction of the risk of floods 

- Environment protection 

- Optimization of the WWTP 

max( , lim )
jflood j q

j

J o q 

cso l
l

J CSO

*( )WWTP i i
i

J WWTP WWTP 

qj flow through sewer j 

CSOl
k combined sewer overflow 

volume at site l 

WWTPi waste water treatment 

plant flow i 

1

0

( )
N

k k k

flood CSO WWTP
k

J J J J  




  
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Global Control vs Local control 

WWTP Volume 

50 % improvement 
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CORAL: MPC tool for Sewer Networks 
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CORAL Architecture 

CORAL 

DB 

MONITORING MODE REPRODUCTION 

 MODE 

SIMULATION MODE EDITOR MODE 

NETWORK TOPOLOGY  

EDITION 

NETWORK 

 PARAMETRIZATION 

MODEL EQUATIONS 

GENERATION 

SIMULATION 

PARAMETRIZATION 

DATABASE  

PREPARATION 

OFF-LINE 

 OPTIMIZATION 

REPORT  

GENERATION 

MONITORING 

PARAMETRIZATION 

TELECONTROL  

CONNECTION 

ON-LINE 

 OPTIMIZATION 

RESULTS 

 VISUALIZATION 

SCADA OPTIMIZER 
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Introduction to FDI in Sewer Networks 

 In this presentation, the FDI problem of rain 
gauges and limnimeters of Barcelona’s urban 
sewer system is addressed. 

 

 Rain gauges and limnimeters are used for the 
real-time global control of the whole Barcelona 
network. 

 

 Often these instruments are out of order in rain 
scenarios when the control system must be fully 
operative. 

 

 In order to detect and isolate faulty instruments 
and to reconstruct faulty measurements from 
data fusion, a fault diagnosis system is 
necessary. 
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The Architecture of the FDI System 

Fault 

Detection
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Fault Isolation Procedure 

s(k) 

Signature

Vector 

d(k) 

Decision

Vector 

y1 y2 y3 y4 y5 y7 y8

r1 1 0 1 0 0 0 1

r2 1 1 0 1 0 0 0

r3 1 0 1 0 0 1 0

r4 0 0 0 1 1 0 1
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)S),k(s(distHam)k(d ii 

Si(k) 

f(k)=y2 

Fault 

Indicator 

))k(d(minarg)k(f 

Hamming Distance: number 

of different bits between two 

binary codes 

21 ccdistHam 

)k(ya)k(ya)k(y)k(r

)k(ya)k(ya)k(y)k(r

)k(ya)k(ya)k(y)k(r

)k(ya)k(ya)k(y)k(r

84854544

73713133

42412122

81831311



























0

0

1

0





























3

2

2

1

3

0

2

57 Réunion GT S3 - February 4th, 2016 

 



Real System

Interval 

Observer

Fault Detection Module
(Continuous Dynamic System)

Fault Signal 

Generation

Fault Signal 

Analysis
Fault Isolation

Fault Detection/Isolation 

Interface Module
(Continuous/Discrete Dynamic System)

Fault Isolation Module
(Discrete-Event System)

( )ku ( )ky

ˆ ˆ( ), ( )k k 
 

y y

( )k

Measured 

output

Measured 

input

Estimated 

output

Fault 

signal

Fault 

signal evaluation

results

Fault 

diagnosis

01( )

( )

( )

( )

k

sensit k

time k

order k

factor

factor

factor

factor

FSM

matrices 

database

 residual value size: big violation of the threshold or only a small fault signal 
activation. 

 residual sensitivity with respect to a certain fault. 

 time pattern of fault signal occurrence. 

 order of fault signal occurrence. 

 

 

 

 

 

 

 

 

 

 

In particular, such interface can be improved taking into account the following 
information: 

Enhanced Fault Isolation Scheme 
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new event 

occurred?

update 

memory

activated 

fault signal

evaluation 

fsm01

evaluation 

fsmtime

evalutation 

fsmorder

decision

 logic

Memory Component

Time Series Inference Component

Decision Logic Component

diagnosed 

fault

Fault Detection/

Isolation Interface 

Module

Fault Isolation 

Module

evaluation 

fsmsensit

Pattern Comparison Component

 The interface is based on a 
memory implemented as a table 
in which events in the residual 
history are stored: 

 

 

 

 

 

 For each row, the first column 
stores the occurrence time ti, 
the second one stores, the 
fi,max, and the third one stores 
the sign of the residual.  

 

 If the fault detection component 
detects a new fault signal, it 
updates the memory by filling 
out the three fields.  

 

 

Interface between Fault Detection and Isolation 

Modules  
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Fault Detection and Isolation Interface: 

 FSM Matrices  

Fault Signal Properties FSM  Matrix

Binary FSM 01

Sign FSM sign

Fault residual sensitivity FSM sensit

Occurrence order FSM order

Occurrence time instant FSM time

 

 It is based on the concept of the theoretical fault signature matrix (FSM) 
which was introduced by (Gertler, 1998). 

 

 This matrix stores the theoretical binary influence of a given fault fj (column of 
FSM) on a given residual ri(k) or equivalently, on a given fault signal i(k) 
(row of FSM).  

 

 Here, the fault signature matrix concept is generalized since the binary 
interface is extended taking into account more fault signal properties.  
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Limnimeter Modelling (1):  

“Virtual Reservoir Approach” 
 

 

 Propagation of flows through sewer pipes can be described by 
numerical solution of the continuity and momentum Saint-Vennant's 
partial differential equations. 

 

 

 

 

 

 

 

 

 Saint-Vennant's equations can be used to perform simulation studies 
but are highly complex to solve in real-time, specially for large scale 
systems.  
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Limnimeter Modelling (2):  

“Virtual Reservoir Approach” 

 

 The sewerage network is modeled through a simplified graph relating the 
main sewers and set of virtual and real reservoirs. 

 

 A virtual reservoir is an aggregation of  a catchment of the sewage 
network which approximates the hydraulics of rain, runoff  and sewage 
water retention thereof. 

 

 The hydraulics of virtual reservoirs are: 

 

                                           

                                                           Using Manning’s formula  

                                                                                                and discretising: 

  
 

)t(QS)t(I)t(Q
dt

)t(dV
outin 

I

Qup Qdown=KH

V=HS

S

Ldown=MdownQdown

Manning

Rain

Level

Sensor

H

Linear Tank

Level

Sensor

Rain-gauge

Lup=MupQup

Manning

))k(cI)k(bL)k(aL)1k(L updowndown 

)t(LM)t(Q

)t(LM)t(Q

downdowndown

upupup




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Application Example (1): Modeling Barcelona 

Sewer Network using Virtual Tanks 
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Application Example (2): Modeling Barcelona 

Sewer Network using Virtual Tanks 
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Application Example: 

Structure of the Limnimeter Models  

 Applying the limnimeter modelling methodology based on “virtual 

tanks” to the considered sewer network: 

 12 limnimeters are modelled allowing to compute 12 

residuals.  

 Faults affecting 14 limnimeters can be diagnosed. 

 

 

 

 

 

 

 

 

L 1 L 2 L 3 L 4 L 5 L 6 L 7 L 8 L 9 L 10 L 11 L 12 L 13 L 14 P 1 P 2 P 3 P 4

L 1 X X

L 2 X X X

L 3 X X X

L 4 X X

L 5 X X X X X

L 6 X X X

L 7 X X

L 8 X X X

L 9 X X

L 10 X X X

L 12 X X

L 14 X X X  
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Application Example:  

 Fault Scenario affecting L7 

 

 

 

 A fault affecting limnimeter L7 occurs at t0= 4000s.  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Residual time evolution  
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Fault Tolerant Control 
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Application Example (1) 

 

 Consider the system corresponding to a piece of Barcelona sewer network 

described by the discrete-time state equations 

 

 

 where: 
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Application Example (2) 

 

 The systems constraints are: 

 

 

 Bounding constraints: refers to physical  

     restrictions. 

 

 

 

 

 

 Mass conservation constraints: 
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Reconfiguration Case 

 

 This case considers actuators completely closed or completely open due to the 

fault, what would change the admissibility of the obtained actuator fault 

configurations. 

 

 

 

 

 

 

8f o

sea seaV VADMISSIBILITY CRITERIA: 

70 Réunion GT S3 - February 4th, 2016 

 



Accomodation Case 

 

 This case considers that faults produces the reduction of the actuators operating 

range (for example from 0-100\% to 0-50\%). 
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Conclusions (1) 

 This presentation has reviewed the use of set-membership methods in robust 

fault detection and isolation (FDI) and tolerant control (FTC).  

 

 Alternatively to the statistical methods, set-membership methods use a 

deterministic unknown-but-bounded description of noise and parametric 

uncertainty (interval models).  

 

 Using approximating sets to approximate the set of possible behaviours (in 

parameter or state space), these methods allows to check the consistency 

between observed and predicted behaviour.  

 

 When an inconsistency is detected a fault can be indicated, otherwise nothing 

can be stated.  
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Conclusions (2) 

 The same principle has been used to estimate interval models for fault detection 

and to develop methods for fault tolerance evaluation.  

 

 Finally, same real application of these methods has been used to exemplify the 

successful uses in FDI/FTC. 
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Further Research 

 As further research, the set-membership approach could be extended to: 

 

 extension to non-linear systems via the use of LPV models. 

 

 deal with the fault isolation and estimation tasks exploiting the set arithmetic 

concepts 

 

 adaptive thresholding in the the frequency domain 

 

 better understand the links between the set-membership and interval approach 

revised in this presentation 

 

 further extend their application to fault tolerant control as means to specify 

admissible closed loop behaviours. 
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Thank you very much 

 for your attention!!! 
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