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Context & Motivations

Prognostics and Health Management (PHM)

Through the interpretation of sensor
measurements (D. Simon, 2012):

/7

+ Health assessment — Early signs of wear

= Accurately assess system / component’s
performance deterioration over the lifetime

= Accurately detect and isolate any engine
system and/or instrumentation malfunctions

% Prognostics — Remaining Useful Life (RUL)
= Predict the state of health in future use
= Provide a degree of confidence in predictions

Taxonomy of PHM approaches
% Category 1 — Data driven approaches
% Category 2 — Physics-based approaches

PHM in presence of uncertainties

X

Integrated smart systems

From S. Garg and D. Simon, Controls and Dynamics
Branch, NASA Glenn Research Center

72 Availability




Context & Motivations X

PHM taxonomy Integrated smart systems

Data driven approaches: R

/

% Use sensor data (reflecting the system’s behavior)
% Use pattern recognition / machine learning / data mining to:
= Detect a « change » in the system: Mapping data — health state

= Predict the RUL: Mapping « data = RUL » or « past data — future data » M o

Model/Physics-based approaches: {
% Use physical models of the system for RUL estimation g

% Modeling physics relies on defining relationships between
= Degradation of components / subsystems and operational conditions
= Multiple components (inputs, state variables, measurements)

In both cases, the « model » is a simplified A

-y
representation of the system’s behavior: - *

Uncertainty management required aiming at
compensating modeling errors

http://www.grc.nasa.gov/

PHM in presence of uncertainties




Outline X

Data-driven models for PHM under uncertainty e

% Part 1: Turbofan engine
= Presentation of turbofan engine and CMAPSS
= Datasets description (complexity illustrated)

http:/airchive.cony http:/fwww gre.nasa.gov/

RUL-CLIPPER: Remaining Useful Life estimation

< Part 2: RUL estimation based on impreCise healLth Index modeled by
simPle Polygons and similarity-basEd Reasoning

= Sensor data have high variability

= No knowledge about the data generating M
process, complex noise T Vi
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Integrated smart systems

Part 1: Turbofan engine



Turbofan engine PHM

X
PHM in the Ioop Integrated smart systems

Engine System
\ ‘ Controller Actuators S

o L. | Piagnostics |+ A\
S00E & =)
Q=P [ -+~ Prognostics ’
Modeling
http://airchive.com/ I Sensors

% Engine control using an engine model to provide guaranteed performance
throughout the life of the engine, but engine models are imperfect
* Model used to generate datasets for enhanced on-board turbofan PHM:

= No two engines are the same, sensors not modeled correctly, model inaccuracy
during transients and at off-design operating conditions, models not updated
once engine into production (design changes not always)...

= Hybrid modeling (analytical + empirical) techniques hold promise for capturing
engine-model mismatch

From Don Simon, Controls and Dynamics Branch, NASA Glenn PHM in presence of uncertainties
Research Center




Modeling physics of a turbofan engine X

Integrated smart systems

(S. Garg and D. Simon, 2012)

I

e ¥ e'f':i4¥""‘ \

RS o R l
http://airchive.com/ 4 / E
hp://www.grc.nasa.gov/ h J Components
Commercial Modular Aero-Propulsion System Simulation (CMAPSS) ‘/

(Frederick, D., DeCastro, J., & Litt, J., 2007)

Bypass Fuel In
™™ Nozzle l
Inlet with
AmOS” s Ram —»f Fan '
P Recovery
—» LPC | HPC |—M{Combustor|—» HPT | LPT b N‘;‘;’;’e
Simulink model Computer mode!

http:/Mwww.gre.nasa.gov/
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Turbofan engine PHM X

Integrated smart systems

Simulated datasets on CMAPSS

» CMAPSS (Commercial Modular Aero-Propulsion System Simulation) datasets
(Saxena, A., Goebel, K., Simon, D., & Eklund, N., 2008)

% Datasets were generated for prognostics development: Simulating of
various operational conditions + faults injection + varying wear degree

Aerodynamic 2000+3C 20000+ hours
Buffeting Flame temperature| | Cooling air Batw sarvi
120 dB/Hz to 10kHz - 405C amblent at B50+PC een “
E . — as 40+ Bar
i & pressures
g """“IL =
5 e N P || —
Forelgn objects : ]I Tt ﬁw
o Birds, lce, stones ___
E ol I il ii 5= jh =) e
5 A =
! | Bmim =
5 LN Shalt movement
50 000g centrifugal
acceleration 1100+4C
5100g casing vibration Metal temperatures
o beyond 20kHz 10 00Grpm
0.75m diameter

(S. Garg and D. Simon, 2012)
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Turbofan engine PHM X

Simulated datasets on CMAPSS Integrated smart systems

» CMAPSS (Commercial Modular Aero-Propulsion System Simulation) datasets
(Saxena, A., Goebel, K., Simon, D., & Eklund, N., 2008)

% Datasets were generated for prognostics development: Simulating of
various operational conditions + faults injection + varying wear degree

Sensor data

IDX | Symbol Meaning Unit

[] 2 Tot. temp. at fan inlet K

7 T2F Tol, temp, at LPC outlel "R

8 T30 Tot. temp. at HPC outlet K

k] T50 Tot. temp. at LFT outlet "R

4] P2 FPressure at Tan nlet Psia . e

[T [ PI3 Tot. pressure in bypass-duct | psia Operating conditions

12 P30 Tot. pressure at HPC outlet sla -

3 NT Phyxfcal fan speed Epm Symbol | Meaning Umt | Range |
3 [ Nec Physical core speed rpm TRA Throttle Resolver Angle | 77, N
I35 | epr Engine pressure ratio (P30/PZ) | - M Mach number Mach | [0,0.84]
It P=30 Static pressure al HPC outlet psia ALT Altitude Kit 0, 42]
17 phi Ratio of Tuel flow o P30 ppsipsi -

I8 NRT Corrected Tan speed rpim TRA: pilot power request

19 NRc Corrected core speed rpm

0 | BFE Bypass Katio -

| tarb Burner tuel-air ratio —

77| hiBleed | Bleed Enthalpy =

z3 Mid Demanded Tan speed rpm

24 | PCRIR d | Demanded corrected Tan speed | rpm

25 Wil HPT coolant bleed Thm/s

26 Wiz LPT coolant bleed b5

PHM in presence of uncertainties



Turbofan engine PHM X

Simulated datasets on CMAPSS Integrated smart systems

» CMAPSS (Commercial Modular Aero-Propulsion System Simulation) datasets
(Saxena, A., Goebel, K., Simon, D., & Eklund, N., 2008)

Datasets characteristics

| Datasets I #U [ #2 | #3 [ #4 [ #5T | #5V |

Nh. fault modes 1 1 2 2 | |

EE' op. conditions n]m 22“ ”lmI 239 Z?H E?E ~1360 simulated turbofan run-to-failure

. Irammm nits . . . .

Nb tesing anits | 100 | 239 | 100 [ 248 | 213 435 | testing data (trajectories / instances)

Minimum RUL T ] G G 10 G

Maximum RUL 145 | 194 | 145 | 195 | 150 | 190

Datasets available since the 2008’s Int. Conference on PHM During 2008-2014 period:

- #1, #2, #3, #4. « Turbofan engine datasets » - ~7100 downloads of datasets #1-
- #5, #6: « Data challenge » or « PHM'08 datasets » #4. ~2000 of datasets #5-#6

- 70 papers using those datasets

Scoring function (official performance measure called timeliness, (Google Scholar)

- 5 papers focused on prognostics

using full training/testing datasets
=1...N as originally provided by the
organisers

to be minimized)

N
S=Y S,
n=1

d,, = estimated RUL — true RUL

5 _ e /B3 _1.d, <0 ;
T e —1d, >0

PHM in presence of uncertainties



Prognostics on CMAPSS

X

From sensor measurements to a health indicator Integrated smart systems

% Operating conditions can be clustered (grouped) into 6 main operating
conditions (OC), (Wang 2010, Richter 2012)

** For the i-th training trajectory, sensor data are grouped in each OC

% Hyp. 1: The sensor measurements do not vary too much between two
consecutive samples in the same regime — The evolution is locally linear

% Hyp. 2: The health state is monotonically decreasing = An exponential

model can be used to represent the global evolution of the health index
(theoretical output)

HI; (x;.07) = 1 — exp (lﬂogg(é]ﬂj?) -

Deduce a regression model in each regime
q

HIi(x.,07) = 07+ > 07, -2

n=1

t) S [0'1,0'2].

K/
0.0

This approach was used on all
(six) CMAPSS datasets

Presented in [E. Ramasso, Investigating computational

geometry for failure prognostics, Int. Journal on PHM and
in PHM-E conference, accepted, 2014]. PHM in presence of uncertainties




Prognostics on CMAPSS X

From sensor measurements to a health indicator Integrated smart systems

Theoretical model (Hyp. 2) HI without operating conditions

_ns
z
E s
s
2
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0
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HI with operating conditions

Heahh indicator (L

03 s 100 150 200 250 300
Time umit

PHM in presence of uncertainties




Prognostics on CMAPSS X

From sensor measurements to a health indicator Integrated smart systems

All HI computed on dataset #2 (6 OC, 1 Fault)

HI on #2

_ | | | | | | | |
0'40 50 100 150 200 250 300 350 400

Time unit

PHM in presence of uncertainties




Integrated smart systems

Part 2: RUL estimation (RULCLIPPER algorithm)



RULCLIPPER Algorithm

X

Imprecise Health Indicators Intograted smart systems

Health indicates (H1)
= = =
- = ]

=
H

=

&
=

Based on HI, usual approaches generally use a functional form (approx.)
of the HI: locally linear, exponential, quadratic, neural networks...

These approximations are then used for extrapolation for RUL estimation

Problem: variability of measurements is high, so that noise models /
variance-based parameters (embedded in methods) do not generalise well

A rather unusual approach is proposed: a HI is interpreted as a « geometric
figure », more exactly a planar polygon = Imprecise Health Indicator (IHI)

Health indicator Upper and lower enveloppe: IHI
a VA\*J A:d N \y’ A |l A
- '\f ‘,o.__ TJ \JQ fw\
= »,Qi N )
S o8- 1IN TR YRR e R (LA
E , T.JL .‘iq':‘;jﬂ
én‘b " | (RN M{'\.
7 iy
= U
!, L
£ B
0 I
50 100 150 200 250 300 30 i o 190 150 ol 25 n 30

Time umit Time unit

PHM in presence of uncertainties




Health indicates (H1)

RULCLIPPER Algorithm X

Imprecise Health Indicators Intograted smart systems

2 = 9 o
(N - S

=

&
=

Based on HI, usual approaches generally use a functional form (approx.)
of the HI: locally linear, exponential, quadratic, neural networks...

These approximations are then used for extrapolation for RUL estimation

Problem: variability of measurements is high, so that noise models /
variance-based parameters (embedded in methods) do not generalise well

A rather unusual approach is proposed: a HI is interpreted as a « geometric
figure », more exactly a planar polygon = Imprecise Health Indicator (IHI)

Health indicator Model: Polygon (set of vertices)

1.2

- polygon

ImMpreciss Hi

50 104} 150 X0 250 M) 350 <0,
Time unit 20 S0 100 Tin‘llrammit 200 250 300

PHM in presence of uncertainties




RULCLIPPER Algorithm X

Library of IHI

Integrated smart systems

Library of training IHI:
Run-to-failure data

Testing IHI: Only an earlier
portion of the run is known

“ From each training data, an IHI is built

% Alibrary of IHI (Imprecise Health Indicator) is
obtained for each dataset with known RULs

Sort the training instances with
respect to the similarity

~

Combine the « closest »
training runs (RUL fusion), to
guess the RUL

50 100 150 200
Time unit

PHM in presence of uncertainties




RULCLIPPER Algorithm X

Similarity-based matching of IHI integrated smart systems

J
000

« Closest » = similarity measure, that has to work between two IHI
Solution: Area of the intersection of polygons (between testing/training data)

J/
000

* Polygon intersection makes use of computational geometry tools, such as
generalised polygon clipping: Vatti’s algorithm, working on convex and
non-convex polygons

% The area of intersection is then converted into a similarity measure:

—_—

. o An = Area (P; N Px)
P;: i-th training
intersection p  _ An (Recall) R -P
A — Fy ., =2

i MR O+P

P = Aﬂ (Precision)
: : = Called F,-measure,
P.: testing A bounded in [0,1]

—_

PHM in presence of uncertainties




RULCLIPPER Algorithm

X

Similarity-based matching of IHI integrated smart systems

* lllustration of recall (R) and precision (P) measures

P.: i-th training

intersection

BrR—=1,P=0
Il Healh index
[ lpP=1,R=0

1.5}

P.: testing

An ZAIB&(PI'DP*) E
An S

R = A (Recall) 3
P = An (Precision)

R -P e & W 0
JFl i — Time unit

’ R +P

Called F,-measure, bounded in [0,1]

PHM in presence of uncertainties




RULCLIPPER Algorithm X

In a nutSh 9” Integrated smart systems

* Inputs:
* Training run-to-failure data (N-dimensional) with known RUL
» Testing data
*» Outputs:
» RUL of testing data
» Confidence degree
% Algorithm
= Transform each training data / into HlI,
» Transform HI, into IHI; (polygon) = library
= Convert the testing data into IHI using the i-th model

= Compute the degree of intersection with each IHI; in the library (using
Vatti’s algorithm + estimate similarity)

RUL = weighted sum of the RULs of the K closest training data
Confidence = Average degree of intersection

PHM in presence of uncertainties




RULCLIPPER Algorithm

Evaluation of results on CMAPSS datasets Integrated smart systems

X

Metrics for evaluation

Accuracy measure: number of I:glfggzs Good predictions rTeod?C';toens
predictions with an interval, to P >
be maximised 13 0 +10

-
Scoring function: penalises .
more the late predictions than - ate
early ones, to be minimised 150

i early

2o ) 20 [ 0 A0y B

Saxena, A, Celaya, J., Balaban, E., Goebel, K., Saha, B., Saha, S., & Schwabacher, W. (2008). Metrics for evaluating
performance of prognostic techniques. In Int. conf. on prognostics and health management.

PHM in presence of uncertainties




RULCLIPPER Algorithm

X

Res u’ts Integrated smart systems

Each marker has two coordinates:

0 the sum of scores and the

average of accuracy over all ' O Data #1
> testing data (for each dataset). O Data #2 Global
> B P > D b D"B 9 ( ) % Data #3
60F >p P N The best score was taken over > Data #4 Global |
> o> o> B> (D ~6000 parameterisations of usual Data #5 Global
T > phy B combination rules of RULs S Dataw2 Local
50+ b > 4 P b _ u » Data #4 Local |
N > > b estimates Data #5 Local
5T ]
3
2
2 30— _
A 3 o
20 -
S I l l i' i'lﬂlllnﬂﬂa
1 1 1 1 1 1 l | | |
035 30 35 40 45 50 55 60 65 70

Accuracy

PHM in presence of uncertainties




RULCLIPPER Algorithm

X

Res u’ts Integrated smart systems

Each marker has two coordinates:
the sum of scores and the

0 ! ! ! average of accuracy over all ' O Do £1
b o testing data (for each dataset). O Data #2 Global
P> % Data #3
60/ >p P N The best score was taken over > Data #4 Global |
> Dagh PP D@ ~6000 parameterisations of usual Data #5 Global
P> : : ® Data #2 Local
ol b B B B> combination rules of RULs S pota#e Local |
estimates Data #5 Local

Packets of markers represent the results|

B a0

g — on ~500 combinations of input sensors
&3 used to compute the health indicators

S 30~ -

10—~

|
70

& oo |
R T THTTHTE——
20 a5 50 55 60 6s

Accuracy

PHM in presence of uncertainties




RULCLIPPER Algorithm

X

Res u’ts Integrated smart systems

70 T T T I T T T T

I:|1 Data #1

S i i O Data #2 Global
L 2 b D-DB Increasing gomplexﬂy of datasets O Dua 2
60~ | >E P 5 = Decreasing performances > Data #4 Global |
: : Data #5 Global
> pb> > o5 ;:} S (increasing of scores and o Data 3 Glob:
50 decreasing of accuracies) » Data #4 Local |
Data #5 Local
&}
£ ]
75 O
20~ —
10~ 1_‘. . l i 7
#iilli'i|| lli'i i'lﬂlllnﬂﬂa
1 1 1 1 1 1 1 | | |
0 25 30 35 40 45 50 55 60 65 70

Accuracy

PHM in presence of uncertainties




RULCLIPPER Algorithm

X

Res u’ts Integrated smart systems

70 T T T T T T T

I:|1 Data #1

. O Data #2 Global
> bp > D,DB % Data #3
60— bp PP B > Data #4 Global |
P> P> b Data #5 Global
P> P b o B ® Data #2 Local
50+ b B P b » Data #4 Local |
> s Data #5 Local
B " b "bb
%m_ | Datatset #4: most complex (6 OC, 2 faults) .
: = Bad (high) score, bad (low) accuracy
g
2 30~ —
A 3 o
20 —
- X P'P"
N1 l i' i'lﬂlllnﬂﬂa
1 1 1 1 1 1 | | | |
035 30 35 40 45 50 55 60 65 70

Accuracy

PHM in presence of uncertainties




RULCLIPPER Algorithm

X

Res u’ts Integrated smart systems

70 T T T T T T T T

I:|1 Data #1

b >R Without taking operating conditions O Data #2 Global
. >, PP OC) int tt te th % Data toball
60 >b P 5 (OC) into account to compute the b Data #4 Global
Py P> b HI: worse scores! Data #5 Global
> &by P ® Data #2 Local
50+ » Data #4 Local |
> o> b b Data #5 Local
_ Bp “p P
%m_ Datatset #4: most complex (6 OC, 2 faults), .
: higher score, lower accuracy
By taking OC into account to compute the¢
~oL HI: much better scores! ]
10— $ e | i _
#iilli.il| llili i'lﬂlllnﬂna
1 1 1 1 1 1 | | | |
0 40 a5 50 55 60 65

70
Accuracy

PHM in presence of uncertainties




RULCLIPPER Algorithm

X

Res u’ts Integrated smart systems

70 T T T T T T T T

I:|1 Data #1

> O Data #2 Global
AL e L # Daa#3 |
b >p prb" B . Comparing with #4: OC are more > ggii‘;gﬁ::
>p> > b Shs influent than fault modes on the ® Data #2 Local
s0(- b B > _#p o , degradation prediction (for > gazi‘;lﬁ: '
N Ep 7. »  RULCLIPPER) :
%4{}— E P> b P DE? [ m
3 »B »P
8 P &
z
330- Datatset #2: Complex (60C, 1 fault), higher
score, lower accuracy
20 ~ _
nl'
ol & ",
10— & | .
#iilli. ll lli'iii'lﬂlllnﬂﬂa
035 30 35 0 as 50 55 60 63 70
Accuracy
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RULCLIPPER Algorithm

X

Res u’ts Integrated smart systems

70 T T T T T T T T

o Data #1
S O Data #2 Global
o > BO® :’b > 5B # Daa#3 |
> - > b':bp B Comparing with #2: Performing well on T patadd Globa
bi‘-‘wp::-'“’b‘" D> TN Pp #2 would result in « good » ® Data #2 Local
50~ B > LEPr . performance on the data challenge (?) " g:‘;i‘;ﬁ:} '
—_ b DB B Db‘b pbb
%4{}— E P> > B P> [ 7
5 > > P
g e
;ﬁ“ 30~ o fs E |

Datatset #5 (data challenge
training): Complex (60C, 1 fault),

|||iliiillilllnﬂﬂa
l l l
55 (311 63

|
70

l

10—~

25 30 35 40 45 50
Accuracy
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RULCLIPPER Algorithm

X

Res u’ts Integrated smart systems

70 T T T T T T T T

I:|1 Data #1

by © Data #2 Global

L L L B  Dua#3 |

g b1 g DDDDD B b Confirm that OC are more influent . E:ii;fgﬁ:}
. D‘wpc- Wb- TN P than fault modes on the degradation ® Data #2 Local

50 B D> Dgp » p  prediction (for RULCLIPPER) " g:ii‘;ﬁ:} '
Em— Datatsets #1 and #3: less complex (1 )
B o OC, 1 or 2 faults), lower (better) score,

higher (better) accuracy

20

1of

s

PHM in presence of uncertainties



RULCLIPPER Algorithm

X

Sensitivity of input sensors for HI estimation e

\ Score
By +25% A
______ B
Bx AXx Accuracy/

For the ~500 combinations of sensors,
about ~6000 parameterisations of standard
combination rules of RULs were tested

For each input sensor subset (among
~500) used to compute the HI

B=(Bx,By): select the combination
rule yielding the lowest score (By),
Bx is the corresponding accuracy

A=(Ax,Ay): select another combination
rule with the best accuracy Ay for which
the score falls within the interval

[By ; Ay~=By+25%)]

Then A and B defines a rectangle in the
score-accuracy plane

PHM in presence of uncertainties




Score (normalised)

Score (normalised)

52

Labe/ 4/ tion

% For the ~500 combinations, estimate and cumulate all rectangles

54

48

56

50

58

52

[ilH] 62

54

Accuracy

56
Accuracy

58

64

66

68

64

Score (normalised)

32 34 36 38 40 42 44 46 48 50 52

Accuracy

789 b
70.9 8
6. 17

2547 K¢

E s

£ 46.7

£ '

£ 386

b 3
30.5

b
) 3_:"‘ ]

30 35 40 43 a0
Accuracy




RULCLIPPER Algorithm X

Sensitivity of input sensors for HI estimation e

% The selection of the right subset of sensors is critical if the dataset is
complex (number of OC, number of fault modes)

1

bl
=

bl
N

#1: The accumulation of rectangles

gives form to a « cube »

- Most of subsets of sensors yield
good results

- Easy to parameterise the algorithms

oy
o

Score (normalised)
=

g
k=x}
[ T T VS

w
—

52 34 56 38 60 62 64 66 68 70
Accuracy

PHM in presence of uncertainties
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X

Sensitivity of input sensors for HI estimation e

% The selection of the right subset of sensors is critical if the dataset is
complex (number of OC, number of fault modes)

#2: Operating conditions yield two

« clouds », one with a high peak:

- The spread means that the input
sensors become critical to
compute the HI

- The peaks is the position of the
best parameterisations

PHM in presence of uncertainties




RULCLIPPER Algorithm X

Sensitivity of input sensors for HI estimation e

% The selection of the right subset of sensors is critical if the dataset is
complex (number of OC, number of fault modes)

-4=m 43 The second fault mode do not affect

i’ too much the results:

i - translation of the « cloud » to the

° upper left hand-side compared to #1
‘ - The peak is higher meaning that the
2 subset is more critical than #1

PHM in presence of uncertainties




RULCLIPPER Algorithm X

Sensitivity of input sensors for HI estimation e

% The selection of the right subset of sensors is critical if the dataset is
complex (number of OC, number of fault modes)

-3
; @«
=]

1

#4:. For the most difficult dataset, four
« clouds » appear: The combination of
fault modes and operating conditions
greatly increases the sensitivity of
sensor subsets on the performances

Score (normalised)
= K f=y
s+ m
~] o

ek
= %
o

[ T R v T

PHM in presence of uncertainties




RULCLIPPER Algorithm X

Comparison with the state-of-the-art — All datasets Integrated smart systems

Scores obtained in 2008 After 2008
Algo. (pseudo.) / Data FOT Hoy Algo. (pseudo.) #or #Fov
heracles (1) 737 (3rd) 5636 (Ist) - RULCLIPPER Tﬁrz 11572
FOH (2) 512 (2nd) 6691 (2nd) SBL (P. Wang, Youn, & Hu, 2013) 1}:39 n.a.
IP(3) na 95021 DW (Hu, Youn, Wang, & Yoon, 2012) 1:5.34 n.a.
- = OW (Hu et al, 2012) 1319 | na.
Sunbea 230.8 (Ist) | 52457 (22nd) | wyrp (Riad, Elminir, & Elattar, 2000) || 1540 | n.a.
bobosir 1263 8057 AW (Hu et al., 2012) IS63 | na
L6 1051 9530 SVM-SBI (Hu et al., 2012) 2047 | na.
GoNavy 1075 10571 RVM-SBI (Hu et al., 2012) 9230 | na
beck 1903 1049 14275 EXP-SBI (Hu et al., 2012) 2282 1.4
Sentient 809 10148 _gNFl;}BE li_:;fohlei 22&?%; 3233 n.a
u et al., 3 n.a.
i‘hutk 2%125‘:} gggg i REGZ (Riad et al., 2010) 6377 | na
RJ R 196G 5263 GPMZB (Coble, 2010) 19200 | na.
ciRes o0 GPM?2 (Coble, 2010) 20600 | n.a.
phmnre 2399 30993 GPMT (Coble, 2010) 22500 | n.a.
SuperSiegel 1139 154999 QUAD (Hu et al., 2012) 53846 | n.a.
RULCLIPPER performance - .
Dataset FT | #F2 | #3 | #4 | #5717 | #ov Better results have been obtained
Score 216 | 2796 | 517 | 3la2 o2 11672 when Considering performance
Accuracy (%) | 67 | 46 59 45 n.a. n.a. g o
FPR (%) 56| 51 | 66 | 49 | na | na | measures |pd|V|du.aIIy (e.g. 70% on
FNR (%) 44 | 49 34 | 51 n.a. n.a. #1 vs 53% in previous work), but
Miﬁ E[%J %8 ﬁ %g Ifg na. | na here only the scoring function was
n.a. 1n.d. . .
MSE 176 | 524 | 256 | 592 | na | na | | considered for ranking

PHM in presence of uncertainties
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Comparison with the state-of-the-art — Data challenge e

4
16,5510 ! ! ! ! ._ 2500
. Perf. on #5V (final validation) *

a Perf. on #5_ (semi—final testing) |

b-J
=

o
5.§semi—ﬁn§, 218 inst?

[ A ...................................... ........................................... ....................................... ...................................... N P |

a
a
‘a
*
[r—
=

B Y R SR PO U,
-] RULCLIPPER (#5,) P* i

Score #5,th (final, 435 inst.)

&
Es
Score #

3.3 B ....... i .................................. ‘ ...... o + ....... e ] e ........................................ 1500

. :
e 0

15
Algorithms (sorted by timeliness)

PHM in presence of uncertainties




Conclusions X

Integrated smart systems

% The RULCLIPPER algorithm is proposed to estimate the RUL of
engineering systems where the health indicators are imprecise
» RULCLIPPER is made of elements inspired from the computational

geometry community and relies on the adaptation of case based
reasoning to manage imprecision in training and testing instances.

» |t is an original and efficient approach for RUL estimation, validated and
compared to past work using the six datasets coming from the
turbofan engine simulator (C-MAPSS), including the so-called

v turbofan datasets (four datasets)
v and the data challenge (two datasets)

These datasets are considered as complex due to the presence of fault
modes and operating conditions.

+ In addition to RULCLIPPER
= A method was proposed to estimate the health indicator
= The selection of the most relevant sensors was tackled.
= [Information fusion rules / ensembles were studied to combine RULs
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Perspectives X
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* As for all similarity-based matching algorithms (T. Wang, 2010; E.
Ramasso et al. 2012, 2013), the computational cost associated to
sort instances is the most important limitation, but:

» Intests, an i7-vPro 8-cores CPU with tasks parallelisation was used
leading low computational costs: Loading and formatting data (from

NASA) + HI estimation took ~2 sec.; Intersection with an IHI of length
220 units (among longest ones) took only ~3.8 msec!

= A procedure can be used to make polygons convex (approximations),
that could drastically reduces computational time

» Computational geometry has become a very active field in particular to
improve memory and time requirements, with applications in multimedia
(computer graphics such as games) for which CUDA implementations
on processor arrays (using graphic cards) were proposed. With such
implementations, real-time and anytime prognostics can be performed.

“ The extension of RULCLIPPER to multiple health indices is also
under study, in particular by using polytopes.

PHM in presence of uncertainties
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Thanks for your attention

Thanks to the organising committee

This work has been carried out in the Laboratory of Excellence ACTION
through the program “Investments for the future” managed by the National
Agency for Research (reference ANR-11-LABX-01-01).
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